Download Free White Dwarfs Book in PDF and EPUB Free Download. You can read online White Dwarfs and write the review.

This self-contained textbook brings together many different branches of physics--e.g. nuclear physics, solid state physics, particle physics, hydrodynamics, relativity--to analyze compact objects. The latest astronomical data is assessed. Over 250 exercises.
From White Dwarfs to Black Holes chronicles the extraordinarily productive scientific career of Subrahmanyan Chandrasekhar, one of the twentieth century's most distinguished astrophysicists. Among Chandrasekhar's many discoveries were the critical mass that makes a star too massive to become a white dwarf and the mathematical theory of black holes. In 1983 he shared the Nobel Prize for Physics for these and other achievements. Over the course of more than six decades of active research Chandrasekhar investigated a dizzying array of subjects. G. Srinivasan notes in the preface to this book that "the range of Chandra's contributions is so vast that no one person in the physics or astronomy community can undertake the task of commenting on his achievements." Thus, in this collection, ten eminent scientists evaluate Chandrasekhar's contributions to their own fields of specialization. Donald E. Osterbrock closes the volume with a historical discussion of Chandrasekhar's interactions with graduate students during his more than quarter century at Yerkes Observatory. Contributors are James Binney, John L. Friedman, Norman R. Lebovitz, Donald E. Osterbrock, E. N. Parker, Roger Penrose, A. R. P. Rau, George B. Rybicki, E. E. Salpeter, Bernard F. Schutz, and G. Srinivasan.
"This is a truly astonishing book, invaluable for anyone with an interest in astronomy." Physics Bulletin "Just the thing for a first year university science course." Nature "This is a beautiful book in both concept and execution." Sky & Telescope
From White Dwarfs to Black Holes chronicles the extraordinarily productive scientific career of Subrahmanyan Chandrasekhar, one of the twentieth century's most distinguished astrophysicists. Among Chandrasekhar's many discoveries were the critical mass that makes a star too massive to become a white dwarf and the mathematical theory of black holes. In 1983 he shared the Nobel Prize for Physics for these and other achievements. Over the course of more than six decades of active research Chandrasekhar investigated a dizzying array of subjects. G. Srinivasan notes in the preface to this book that "the range of Chandra's contributions is so vast that no one person in the physics or astronomy community can undertake the task of commenting on his achievements." Thus, in this collection, ten eminent scientists evaluate Chandrasekhar's contributions to their own fields of specialization. Donald E. Osterbrock closes the volume with a historical discussion of Chandrasekhar's interactions with graduate students during his more than quarter century at Yerkes Observatory. Contributors are James Binney, John L. Friedman, Norman R. Lebovitz, Donald E. Osterbrock, E. N. Parker, Roger Penrose, A. R. P. Rau, George B. Rybicki, E. E. Salpeter, Bernard F. Schutz, and G. Srinivasan.
'Understanding Stellar Evolution' is based on a series of graduate-level courses taught at the University of Washington since 2004, and is written for physics and astronomy students and for anyone with a physics background who is interested in stars. It describes the structure and evolution of stars, with emphasis on the basic physical principles and the interplay between the different processes inside stars such as nuclear reactions, energy transport, chemical mixing, pulsation, mass loss, and rotation. Based on these principles, the evolution of low- and high-mass stars is explained from their formation to their death. In addition to homework exercises for each chapter, the text contains a large number of questions that are meant to stimulate the understanding of the physical principles. An extensive set of accompanying lecture slides is available for teachers in both Keynote(R) and PowerPoint(R) formats.
Snow White is on the run from an evil witch when she comes across some dwarfs in the forest. They agree to take her in and keep her safe if she will help them with their chores. She soon realizes she's taking on a lot more than she bargained for. 77 breakfasts to make, 77 lunches to pack (don't forget the juice boxes!), 77 pairs of pants to mend and a whole lot of dishes. Eventually Snow White decides to take her chances with the witch. There's a surprise ending... well, it may not be so surprising. This is a hilarious retelling of the classic tale, with bright, energetic illustrations featuring busy dwarfs, and the even busier Snow White.
Proceedings of the NATO Advanced Research Workshop, held in Naples, Italy, 24-28 June 2002
Designed for the nonscience major, In Quest of the Universe, Sixth Edition, is a comprehensive, student-friendly introduction to astronomy. This accessible text guides readers through the development of historical and current astronomical theories to provide a clear account of how science works. Koupelis' distinct explanations acquaint students with their own solar system before moving on to the stars and distant galaxies. This flexible approach allows instructors to arrange the modules to fit their own course needs. With numerous interactive learning tools, the Starry Night planetary software package, and stunning visuals and up-to-date content, In Quest with the Universe, Sixth Edition is an exciting overview of this ever-changing discipline.
Astronomy and Astrophysics Abstracts, which has appeared in semi-annual volumes since 1969, is de voted to the recording, summarizing and indexing of astronomical publications throughout the world. It is prepared under the auspices of the International Astronomical Union (according to a resolution adopted at the 14th General Assembly in 1970). Astronomy and Astrophysics Abstracts aims to present a comprehensive documentation of literature in all fields of astronomy and astrophysics. Every effort will be made to ensure that the average time interval between the date of receipt of the original literature and publication of the abstracts will not exceed eight months: This time interval is near to that achieved by monthly abstracting journals, com pared to which our system of accumulating abstracts for about six months offers the advantage of greater convenience for the user. I, 1980; some older Volume 27 contains literature published in 1980 and received before August literature which was received late and which is not recorded in earlier volumes is also included. We acknowledge with thanks contributions to this volume by Dr. J. Bouska, Prague, who surveyed journals and publications in Czech and supplied us with abstracts in English.