SULTAN TARLACI
Published: 2022-08-30
Total Pages: 176
Get eBook
Although quantum mechanics has been around since the beginning of the 20th century, it is only in the last twenty or thirty years that it has begun to find practical applications in everyday life. And in the past twenty years in particular, those working on quantum mechanics and neuroscience have begun to take an interest in each other’s fields. First physicists took an interest in the nervous system, and later, not to be outdone, neuroscientists started to look at quantum physics. In addition, despite there not being a suitable platform, conferences on quantum physics strangely became the scene for discussions on the concepts of consciousness, conscious measurement, and the observer. At neuroscience conferences, discussion started as to whether quantum physics had a place in the communication between nerve cells, and whether the description by classical physics only was insufficient to explain some of the workings of the brain. And after 2000, academic meetings attended by both neuroscientists and quantum physicists started to be held under the title of Quantum Mind/Brain. The speakers at these conferences were not New Age writers or amateurs who ascribe everything to quantum physics; most of them were leading physicists and neuroscientists. What they did and what they wrote was not outside objective scientific practice. NeuroQuantology (2001) is first and foremost a new scientific discipline, just like neuroanatomy (1895), neurobiology (1910), neuroendocrinology, neurochemistry (1920-25), neuropharmacology (1950), neurophilosophy (1989), and neurotheology (1994). It was an approach that blended neuroscience and quantum physics to search with the help of quantum physics for answers to questions which neuroscience alone could not answer. Following the sowing of this first seed, the word NeuroQuantology was used for the first time in 2001, and I became the founder and father first of a journal and then of a potential new field of science. The name was as much a product of inspiration as it was of logic. Of course, there are plenty of clinical and theoretical terms beginning with neuro-, so I was surprised that this particular expression as NeuroQuantology had not been used previously. Up to that time, interdisciplinary articles on neuroscience and related quantum physics had been published in various pioneering physics and neuroscience journals under the heading of “quantum mind/brain”. These were generally articles trying to explain the relationship between measurement and observer problems in quantum physics. Moreover, occasionally, space was given in some cognitive science journals to articles discussing whether quantum physics would solve unanswered questions of free will, choice, decision-making and consciousness. International conferences were organised under the heading of “quantum mind”. But there was no academic journal which covered all such topics. Since 2003, neuroscience and quantum physics have been growing together by examining two main topics under the NeuroQuantology. One of these is the problem of measurement in quantum mechanics. The measurement problem has brought many other still unanswered questions in its train. In classical physics, there is only an observer, but quantum mechanics has become embroiled in unending discussion about whether this person is an observer, a participant in the measurement, or even a reporter of the result of the measurement. There is increasing discussion in many articles on whether consciousness operates on measurement, and if it does, to what extent. The Copenhagen interpretation, which has been around since the beginning of quantum mechanics, while suggesting solutions to multiple worlds and the theory of hidden variables, has not been part of a clear answer to the question of what role the observer plays. Eugene Wigner, John Carew Eccles, David Bohm, Stuart Hameroff, Roger Penrose, Ewan Harris Walker, Henry Stapp, Jack Sarfatti and many other distinguished people have produced mathematical equations or theoretical framework to show the role of consciousness in quantum mechanics, but so far there is no generally accepted approach. If a conscious observer really does have an effect on quantum measurements, many of our equations will have to be drastically changed. The other main topic of NeuroQuantology is quantum neurobiology: that is, the brain operates not only at a classical, macroscopic level, but also at a quantum, microscopic level. It covers the question of where this level begins and whether it has a bearing on our consciousness, mind, memory and decision-making processes. And, last subtopic is quantum biology. Quantum biology refers to applications of quantum mechanics to biological objects and problems. Usually, it is taken to refer to applications of the "non-trivial" quantum features such as superposition, nonlocality, entanglement and tunneling, as opposed to the "trivial" but ubiquitous quantum mechanical nature of chemical bonding, ionization, and other phenomena that are the basis of the fundamental biophysics and biochemistry of organisms. Many biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve chemical reactions, light absorption, formation of excited electronic states, transfer of excitation energy, and the transfer of electrons and protons (hydrogen ions) in chemical processes such as photosynthesis and cellular respiration. The last decade has produced some significant work showing how quantum effects can occur in biological systems, with advances in three areas utilizing three of the key ideas from quantum physics having been particularly prominent in the media, although often with a certain amount of controversy: superposition in photosynthesis, entanglement in magnetoreception and quantum tunneling in smell perception. The last decade has also seen some significant advances in our understanding of the brain, from research into how quantum computation might create consciousness through coherence in microtubules, to calls for the emergence of a new field of quantum psychiatry/psychopathology to use our understanding of quantum effects in the brain to help tackle mental illness. Discussions focused on the manner in which quantum effects might not just be occurring in the healthy brain, but also creating pathological symptoms, including mental illnesses such as depression and schizophrenia. The first peoples to suggest that quantum mechanics could operate in biology, even though they were the godfathers of quantum mechanics (Niels Bohr, Erwin Schrödinger, Herbert Fröhlich, Walter Heitler, and Max Delbrück), now after 100 years have passed have been squeezed into quantum mechanics and the physics and chemistry of solid, dead matter. Thus, the biological structures that are taught from primary school are made up of physical and chemical structures. Erwin Schrödinger was also one of the first scientists to suggest a study of quantum biology in his 1944 book What Is Life? Incomprehensibly, there has been resistance for a century to quantum biology. NeuroQuantology provides the motivation to break down this resistance and open further a new door to quantum neurobiology.