Download Free Wetlands In Northern Salt Lake Valley Salt Lake County Utah Book in PDF and EPUB Free Download. You can read online Wetlands In Northern Salt Lake Valley Salt Lake County Utah and write the review.

"This CD consists of a report (40 pages, 6 plates) of an evaluation by the Utah Geological Survey of threats to the Salt Lake Valley wetlands posed by changes in climatic conditions and by increased ground-water withdrawals accompanying population growth"--Back label of container.
This 20-page report summarizes observations of sediments and shorelines of the Gilbert episode in the Bonneville basin of northwestern Utah. Lake Bonneville dropped to altitudes similar to those of modern Great Salt Lake by 13,000 years ago, remained low for about 1400 years, then rapidly rose about 50 ft (15 m) during the Gilbert episode (about 11,600 years ago). The Gilbert lake was probably less extensive than shown by previous mapping of the Gilbert shoreline. The lake reached altitudes of 4250-4255 ft (1295-1297 m), and its shoreline, which is not well defined anywhere in the basin, was probably not deformed by residual isostatic rebound associated with removal of the Lake Bonneville water load. Holocene Great Salt Lake has not risen as high as the Gilbert-episode lake.
This bulletin serves not only to introduce the non-geologist to the rich geology of Millard County, but also to provide professional geologists with technical information on the stratigraphy, paleontology, and structural geology of the county. Millard County is unique among Utah’s counties in that it contains an exceptionally complete billion-year geologic record. This happened because until about 200 million years ago the area of present-day Millard County lay near sea level and was awash in shallow marine waters on a continental shelf upon which a stack of fossil-bearing strata more than 6 miles (10 km) thick slowly accumulated. This bulletin summarizes what is known about these strata, as well as younger rocks and surficial deposits in the county, and provides references to scientific papers that describe them in greater detail. Mountains North 30 x 60 (1:100,000-scale) quadrangles. These companion maps and this bulletin portray the geology of Millard County more completely and accurately than any previously published work.
This report characterizes the relationship of geology to groundwater occurrence and flow, with emphasis on determining the thickness of the valley-fill aquifer and water yielding properties of the fractured rock aquifers. Develops a water budget for the drainage basin and classifies the groundwater quality and identifies the likely sources of nitrate in groundwater.
Great Salt Lake is an enormous terminal lake in the western United States. It is a highly productive ecosystem, which has global significance for millions of migrating birds who rely on this critical feeding station on their journey through the American west. For the human population in the adjacent metropolitan area, this body of water provides a significant economic resource as industries, such as brine shrimp harvesting and mineral extraction, generate jobs and income for the state of Utah. In addition, the lake provides the local population with ecosystem services, especially the creation of mountain snowpack that generates water supply, and the prevention of dust that may impair air quality. As a result of climate change and water diversions for consumptive uses, terminal lakes are shrinking worldwide, and this edited volume is written in this urgent context. This is the first book ever centered on Great Salt Lake biology. Current and novel data presented here paint a comprehensive picture, building on our past understanding and adding complexity. Together, the authors explore this saline lake from the microbial diversity to the invertebrates and the birds who eat them, along a dynamic salinity gradient with unique geochemistry. Some unusual perspectives are included, including the impact of tar seeps on the lake biology and why Great Salt Lake may help us search for life on Mars. Also, we consider the role of human perceptions and our effect on the biology of the lake. The editors made an effort to involve a diversity of experts on the Great Salt Lake system, but also to include unheard voices such as scientists at state agencies or non-profit advocacy organizations. This book is a timely discussion of a terminal lake that is significant, unique, and threatened.
“Wetland Habitats of North America is essential reading for everyone who studies, manages, or visits North American wetlands. It fills an important void in the wetland literature, providing accessible and succinct descriptions of all of the continent’s major wetland types.” Arnold van der Valk, Iowa State University “Batzer and Baldwin have compiled the most comprehensive compendium of North American wetland habitats and their ecology that is presently available—a must for wetland scientists and managers.” Irving A. Mendelssohn, Louisiana State University "If you want to gain a broad understanding of the ecology of North America’s diverse wetlands, Wetland Habitats of North America is the book for you. Darold Batzer and Andrew Baldwin have assembled an impressive group of regional wetland scientists who have produced a virtual encyclopedia to the continent’s wetlands. Reading the book is like a road trip across the Americas with guided tours of major wetland types by local experts. Your first stop will be to coastal wetlands with eight chapters covering tidal wetlands along the Atlantic, Gulf, and Pacific coasts. Then you’ll travel inland where you can visit any or all of 18 types ranging from bottomland swamps of the Southeast to pothole marshes of the Northern Prairies to montane wetlands of the Rockies to tropical swamps of Central America and desert springs wetlands. All in one book—I’m impressed! Every wetlander should add this book to her or his swampland library. Ralph Tiner, University of Massachusetts–Amherst
Geologic exposures in the Salt Lake City region record a long history of sedimentation and tectonic activity extending back to the Precambrian Era. Today, the city lies above a deep, sediment-filled basin flanked by two uplifted range blocks, the Wasatch Range and the Oquirrh Mountains. The Wasatch Range is the easternmost expression of major Basin and Range extension in north-central Utah and is bounded on the west by the Wasatch fault zone (WFZ), a major zone of active normal faulting. During the late Pleistocene Epoch, the Salt Lake City region was dominated by a succession of inter-basin lakes. Lake Bonneville was the last and probably the largest of these lakes. By 11,000 yr BP, Lake Bonneville had receded to approximately the size of the present Great Salt Lake.