Download Free Weld Detail Fatigue Life Improvement Techniques Book in PDF and EPUB Free Download. You can read online Weld Detail Fatigue Life Improvement Techniques and write the review.

Fatigue cracks in steel ships often occur at welded joints where stress concentrations due to the joint geometry are relatively high and the fatigue strength of the weld is reduced in comparison to that of the base metal. This becomes more critical in ships built of High Strength Steels (HSS) because the fatigue strength of steel in the a welded condition does not increase in proportion to the yield or tensile strength. In many cases, the fatigue performance of severely loaded details can be improved by employing good detail design practices, for example by upgrading the welded detail class to one having a higher fatigue strength. In some cases, however, there may be no better alternatives to the detail in question and modification of the detail may not be practicable. As an alternative to strengthening the structure at a considerable increase in costs, procedures which reduce the severity of the stress concentration at the weld, remove imperfections, and/or introduce local compressive stresses at the weld can be used for improvement of the fatigue life. Similarly, these fatigue improvement techniques can be applied as remedial measures to extend the fatigue life of critical welds that have failed prematurely and have been repaired. To date, weld fatigue life improvement techniques have been successfully applied in several industries. While there has been increasing interest in the application of fatigue life improvement techniques to ship structures, at present there is a lack of guidance on the use of such techniques for design, construction and repair. Hence the key elements of this project were to compile available data on fatigue life improvement techniques, assess the feasibility and practicality for their application to ship details, identify gaps in the technology, and finally to recommend design, construction and repair requirements.
The weld toe is a primary source of fatigue cracking because of the severity of the stress concentration it produces. Weld toe improvement can increase the fatigue strength of new structures significantly. It can also be used to repair or upgrade existing structures. However, in practice there have been wide variations in the actual improvements in fatigue strength achieved. Based on an extensive testing programme organised by the IIW, this report reviews the main methods for weld toe improvement to increase fatigue strength: burr grinding, TIG dressing and hammer and needle peening. The report provides specifications for the practical use of each method, including equipment, weld preparation and operation. It also offers guidance on inspection, quality control and training as well as assessments of fatigue strength and thickness effects possible with each technique. IIW recommendations on methods for improving the fatigue strength of welded joints will allow a more consistent use of these methods and more predictable increases in fatigue strength. Provides specifications for the practical use of each weld toe method, including equipment, weld preparation and operation Offers guidance on inspection, quality control and training, as well as assessments of fatigue strength and thickness effects possible with each technique This report will allow a more consistent use of these methods and more predictable increases in fatigue strength
The objective of the FATWELDHSS project was to study post-weld treatment techniques and their effect on the fatigue life of MAG welded attachments in High Strength Steel (HSS). Fatigue cracks in steel structures often occur at welded joints, where stress concentrations due to the joint geometry and tensile residual stresses are relatively high. Fatigue life improvement techniques, which rely on improving the stress field and/or the surface geometry around the welded joints, are generally known to be beneficial. Therefore, within the framework of this project, the following were examined: diode laser weld toe re-melting; High Frequency Mechanical Impact (HFMI) treatment; Low Transformation Temperature (LTT) filler wires Laser diode re-melting was used to improve the surface profile at the weld toe and thus reduce stress concentrations. HFMI treatment involving high frequency hammering of the weld toe is another technique that can produce a smooth weld toe profile but, more significantly, which also can introduce compressive residual stresses. Lastly, two new LTT filler wires were developed within the project as these can decrease or even remove tensile residual stresses resulting from weld zone shrinkage. An extensive fatigue testing programme was set up to establish the levels of improvement in the fatigue lives of the welded attachments achieved by application of the selected improvement techniques. Furthermore, two industrial demonstrators were selected that could show the project achievements in terms of facilitating the introduction of high strength steels by overcoming the limitations posed by the fatigue properties of the welded joints. In addition, modelling tools were developed to predict the residual stresses at the welded joint. Finally, practical guidelines were developed for enhancing the fatigue strength of HSS welded structures.
This book of recommendations presents an overview of High Frequency Mechanical Impact (HFMI) techniques existing today in the market and their proper procedures, quality assurance measures and documentation. Due to differences in HFMI tools and the wide variety of potential applications, certain details of proper treatments and quantitative quality control measures are presented generally. An example of procedure specification as a quality assurance measure is given in the Appendix. Moreover, the book presents procedures for the fatigue life assessment of HFMI-improved welded joints based on nominal stress, structural hot spot stress and effective notch stress. It also considers the extra benefit that has been experimentally observed for HFMI-treated high-strength steels. The recommendations offer proposals on the effect of loading conditions like high mean stress fatigue cycles, variable amplitude loading and large amplitude/low cycle fatigue cycles. Special considerations for low stress concentration welded joints are also given. In order to demonstrate the use of the guideline, the book provides several fatigue assessment examples.
Avoiding or controlling fatigue damage is a major issue in the design and inspection of welded structures subjected to dynamic loading. Life predictions are usually used for safe life analysis, i.e. for verifying that it is very unlikely that fatigue damage will occur during the target service life of a structure. Damage tolerance analysis is used for predicting the behavior of a fatigue crack and for planning of in-service scheduled inspections. It should be a high probability that any cracks appearing are detected and repaired before they become critical. In both safe life analysis and the damage tolerance analysis there may be large uncertainties involved that have to be treated in a logical and consistent manner by stochastic modeling. This book focuses on fatigue life predictions and damage tolerance analysis of welded joints and is divided into three parts. The first part outlines the common practice used for safe life and damage tolerance analysis with reference to rules and regulations. The second part emphasises stochastic modeling and decision-making under uncertainty, while the final part is devoted to recent advances within fatigue research on welded joints. Industrial examples that are included are mainly dealing with offshore steel structures. Spreadsheets which accompany the book give the reader the possibility for hands-on experience of fatigue life predictions, crack growth analysis and inspection planning. As such, these different areas will be of use to engineers and researchers.
The failure of any welded joint is at best inconvenient and at worst can lead to catastrophic accidents. Fracture and fatigue of welded joints and structures analyses the processes and causes of fracture and fatigue, focusing on how the failure of welded joints and structures can be predicted and minimised in the design process. Part one concentrates on analysing fracture of welded joints and structures, with chapters on constraint-based fracture mechanics for predicting joint failure, fracture assessment methods and the use of fracture mechanics in the fatigue analysis of welded joints. In part two, the emphasis shifts to fatigue, and chapters focus on a variety of aspects of fatigue analysis including assessment of local stresses in welded joints, fatigue design rules for welded structures, k-nodes for offshore structures and modelling residual stresses in predicting the service life of structures. With its distinguished editor and international team of contributors, Fracture and fatigue of welded joints and structures is an essential reference for mechanical, structural and welding engineers, as well as those in the academic sector with a research interest in the field. Analyses the processes and causes of fracture and fatigue, focusing predicting and minimising the failure of welded joints in the design process Assesses the fracture of welded joints and structure featuring constraint-based fracture mechanics for predicting joint failure Explores specific considerations in fatigue analysis including the assessment of local stresses in welded joints and fatigue design rules for welded structures
This book provides a basis for the design and analysis of welded components that are subjected to fluctuating forces, to avoid failure by fatigue. It is also a valuable resource for those on boards or commissions who are establishing fatigue design codes. For maximum benefit, readers should already have a working knowledge of the basics of fatigue and fracture mechanics. The purpose of designing a structure taking into consideration the limit state for fatigue damage is to ensure that the performance is satisfactory during the design life and that the survival probability is acceptable. The latter is achieved by the use of appropriate partial safety factors. This document has been prepared as the result of an initiative by Commissions XIII and XV of the International Institute of Welding (IIW).
The key to avoidance of fatigue, which is the main cause of service failures, is good design. In the case of welded joints, which are particularly susceptible to fatigue, design rules are available. However, their effective use requires a good understanding of fatigue and an appreciation of problems concerned with their practical application. Fatigue strength of welded structures has incorporates up-to-date design rules with high academic standards whilst still achieving a practical approach to the subject. The book presents design recommendations which are based largely on those contained in recent British standards and explains how they are applied in practice. Attention is also focused on the relevant aspects of fatigue in welded joints which are not yet incorporated in codes thus providing a comprehensive aid for engineers concerned with the design or assessment of welded components or structures. Background information is given on the fatigue lives of welded joints which will enable the engineer or student to appreciate why there is such a contrast between welded and unwelded parts, why some welded joints perform better than others and how joints can be selected to optimise fatigue performance.