Download Free Web Usage Mining Techniques And Applications Across Industries Book in PDF and EPUB Free Download. You can read online Web Usage Mining Techniques And Applications Across Industries and write the review.

Web usage mining is defined as the application of data mining technologies to online usage patterns as a way to better understand and serve the needs of web-based applications. Because the internet has become a central component in information sharing and commerce, having the ability to analyze user behavior on the web has become a critical component to a variety of industries. Web Usage Mining Techniques and Applications Across Industries addresses the systems and methodologies that enable organizations to predict web user behavior as a way to support website design and personalization of web-based services and commerce. Featuring perspectives from a variety of sectors, this publication is designed for use by IT specialists, business professionals, researchers, and graduate-level students interested in learning more about the latest concepts related to web-based information retrieval and mining.
Web Mining is moving the World Wide Web toward a more useful environment in which users can quickly and easily find the information they need. Web Mining uses document content, hyperlink structure, and usage statistics to assist users in meeting their needed information. This book provides a record of current research and practical applications in Web searching. It includes techniques that will improve the utilization of the Web by the design of Web sites, as well as the design and application of search agents. This book presents research and related applications in a manner that encourages additional work toward improving the reduction of information overflow, which is so common today in Web search results.
Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all the related concepts and algorithms together to form an authoritative and coherent text. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.
Cloud computing provides an easier alternative for starting an IT-based business organization that requires much less of an initial investment. Cloud computing offers a significant edge of traditional computing with big data being continuously transferred to the cloud. For extraction of relevant data, cloud business intelligence must be utilized. Cloud-based tools, such as customer relationship management (CRM), Salesforce, and Dropbox are increasingly being integrated by enterprises looking to increase their agility and efficiency. Impacts and Challenges of Cloud Business Intelligence is a cutting-edge scholarly resource that provides comprehensive research on business intelligence in cloud computing and explores its applications in conjunction with other tools. Highlighting a wide range of topics including swarm intelligence, algorithms, and cloud analytics, this book is essential for entrepreneurs, IT professionals, managers, business professionals, practitioners, researchers, academicians, and students.
The implementation of effective decision making protocols is crucial in any organizational environment in modern society. Emerging advancements in technology and analytics have optimized uses and applications of decision making systems. Decision Management: Concepts, Methodologies, Tools, and Applications is a compendium of the latest academic material on the control, support, usage, and strategies for implementing efficient decision making systems across a variety of industries and fields. Featuring comprehensive coverage on numerous perspectives, such as data visualization, pattern analysis, and predictive analytics, this multi-volume book is an essential reference source for researchers, academics, professionals, managers, students, and practitioners interested in the maintenance and optimization of decision management processes.
In the digital era, the Internet has evolved into a ubiquitous aspect of modern society. With the prominence of the Dark Web, understanding the components of the Internet and its available content has become increasingly imperative. The Dark Web: Breakthroughs in Research and Practice is an innovative reference source for the latest scholarly material on the capabilities, trends, and developments surrounding the secrecy of the Dark Web. Highlighting a broad range of perspectives on topics such as cyber crime, online behavior, and hacking, this book is an ideal resource for researchers, academics, graduate students, and professionals interested in the Dark Web.
This book examines the techniques and applications involved in the Web Mining, Web Personalization and Recommendation and Web Community Analysis domains, including a detailed presentation of the principles, developed algorithms, and systems of the research in these areas. The applications of web mining, and the issue of how to incorporate web mining into web personalization and recommendation systems are also reviewed. Additionally, the volume explores web community mining and analysis to find the structural, organizational and temporal developments of web communities and reveal the societal sense of individuals or communities. The volume will benefit both academic and industry communities interested in the techniques and applications of web search, web data management, web mining and web knowledge discovery, as well as web community and social network analysis.
This book introduces the reader to methods of data mining on the web, including uncovering patterns in web content (classification, clustering, language processing), structure (graphs, hubs, metrics), and usage (modeling, sequence analysis, performance).
Websites are a central part of today’s business world; however, with the vast amount of information that constantly changes and the frequency of required updates, this can come at a high cost to modern businesses. Web Data Mining and the Development of Knowledge-Based Decision Support Systems is a key reference source on decision support systems in view of end user accessibility and identifies methods for extraction and analysis of useful information from web documents. Featuring extensive coverage across a range of relevant perspectives and topics, such as semantic web, machine learning, and expert systems, this book is ideally designed for web developers, internet users, online application developers, researchers, and faculty.
Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. This book presents 15 different real-world case studies illustrating various techniques in rapidly growing areas. It is an ideal companion for data mining researchers in academia and industry looking for ways to turn this versatile software into a powerful analytic tool. R code, Data and color figures for the book are provided at the RDataMining.com website. - Helps data miners to learn to use R in their specific area of work and see how R can apply in different industries - Presents various case studies in real-world applications, which will help readers to apply the techniques in their work - Provides code examples and sample data for readers to easily learn the techniques by running the code by themselves