Download Free Weathering And Landscape Evolution Book in PDF and EPUB Free Download. You can read online Weathering And Landscape Evolution and write the review.

Rock Weathering and Landform Evolution brings together a series of important studies on rock weathering by leading researchers, and illustrates the diversity of approaches and techniques that are currently being used by geomorphologists to study weathering processes and responses. The book commences with a number of research studies and review chapters on weathering processes and weathered products. This is followed by several discussions of the weathering of cut or dressed rock in urban and coastal environments. Contributors then examine the application of weathering and weathering rates to the dating of deposits or rock surfaces. The final section of the book comprises studies of the relationship between weathering and landforms in a variety of climatic environments. The contributions included in this book cover a wide range of topics and demonstrate the many advances that are being made by researchers investigating rock weathering. Some of the studies deal with state-of-the-art technology, others the very traditional geomorphological skills of observation and deductive reasoning, backed up as necessary by statistical analysis. This volume is the first collection of papers on weathering published for many years, and provides a wealth of information not just to geomorphologists but also to geologists, engineers, architects and archaeologists.
In recognition of the fundamental control exerted by weathering on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of Weathering and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in weathering geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into weathering and landscape evolution. The papers included in this book are encapsulated here under the general themes of weathering mantles, weathering and relative dating, weathering and denudation, weathering processes and controls and the 'big picture'. * Contains 15 papers on the techniques and methodologies of research * Provides an up-to-date overview of various aspects of weathering and landscape evolution complemented by a number of excellent case studies * Contains a wealth of basic field data and relevant information
This book provides a holistic guide to the construction of numerical models to explain the co-evolution of landforms, soils, vegetation and tectonics. This volume demonstrates how physical processes interact to influence landform evolution, and explains the science behind the physical processes, as well as the mechanics of how to solve them.
Landscapes are characterized by a wide variation, both spatially and temporally, of tolerance and response to natural processes and anthropogenic stress. These tolerances and responses can be analyzed through individual landscape parameters, such as soils, vegetation, water, etc., or holistically through ecosystem or watershed studies. However, such approaches are both time consuming and costly. Soil erosion and landscape evolution modeling provide a simulation environment in which both the short- and long-term consequences of land-use activities and alternative land use strategies can be compared and evaluated. Such models provide the foundation for the development of land management decision support systems. Landscape Erosion and Evolution Modeling is a state-of-the-art, interdisciplinary volume addressing the broad theme of soil erosion and landscape evolution modeling from different philosophical and technical approaches, ranging from those developed from considerations of first-principle soil/water physics and mechanics to those developed empirically according to sets of behavioral or empirical rules deriving from field observations and measurements. The validation and calibration of models through field studies is also included. This volume will be essential reading for researchers in earth, environmental and ecosystem sciences, hydrology, civil engineering, forestry, soil science, agriculture and climate change studies. In addition, it will have direct relevance to the public and private land management communities.
"The Liwu River runs a short course; its channel head at the water divide in Taiwan's Central Range is a mere 35 km from its outflow into the Pacific Ocean. But in those short 35 km, the Liwu has carved one of the world's geographic wonders: the spectacular Taroko Gorge with marble and granite walls soaring nearly 1000 m above the river channel. Taroko Gorge was a fitting venue for a 2003 Penrose Conference that addressed the coupled processes of tectonics, climate, and landscape evolution. The young mountains, extreme weather, and dramatic landforms provided an appropriate backdrop to wide-ranging discussions of geomorphic processes, climate and meteorology, sediment generation and transport, the effects of erosion on tectonics, and new analytical and modeling tools used to address these processes and problems. This volume's papers extend that discussion, reaching across fields that have experienced rapid advances in the past decade."--Publisher's website.
Explores soil as a nexus for water, chemicals, and biologically coupled nutrient cycling Soil is a narrow but critically important zone on Earth's surface. It is the interface for water and carbon recycling from above and part of the cycling of sediment and rock from below. Hydrogeology, Chemical Weathering, and Soil Formation places chemical weathering and soil formation in its geological, climatological, biological and hydrological perspective. Volume highlights include: The evolution of soils over 3.25 billion years Basic processes contributing to soil formation How chemical weathering and soil formation relate to water and energy fluxes The role of pedogenesis in geomorphology Relationships between climate soils and biota Soils, aeolian deposits, and crusts as geologic dating tools Impacts of land-use change on soils The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the Editors
During geologic spans of time, Earth's shifting tectonic plates, atmosphere, freezing water, thawing ice, flowing rivers, and evolving life have shaped Earth's surface features. The resulting hills, mountains, valleys, and plains shelter ecosystems that interact with all life and provide a record of Earth surface processes that extend back through Earth's history. Despite rapidly growing scientific knowledge of Earth surface interactions, and the increasing availability of new monitoring technologies, there is still little understanding of how these processes generate and degrade landscapes. Landscapes on the Edge identifies nine grand challenges in this emerging field of study and proposes four high-priority research initiatives. The book poses questions about how our planet's past can tell us about its future, how landscapes record climate and tectonics, and how Earth surface science can contribute to developing a sustainable living surface for future generations.
The changing focus and approach of geomorphic research suggests that the time is opportune for a summary of the state of discipline. The number of peer-reviewed papers published in geomorphic journals has grown steadily for more than two decades and, more importantly, the diversity of authors with respect to geographic location and disciplinary background (geography, geology, ecology, civil engineering, computer science, geographic information science, and others) has expanded dramatically. As more good minds are drawn to geomorphology, and the breadth of the peer-reviewed literature grows, an effective summary of contemporary geomorphic knowledge becomes increasingly difficult. The fourteen volumes of this Treatise on Geomorphology will provide an important reference for users from undergraduate students looking for term paper topics, to graduate students starting a literature review for their thesis work, and professionals seeking a concise summary of a particular topic. Information on the historical development of diverse topics within geomorphology provides context for ongoing research; discussion of research strategies, equipment, and field methods, laboratory experiments, and numerical simulations reflect the multiple approaches to understanding Earth’s surfaces; and summaries of outstanding research questions highlight future challenges and suggest productive new avenues for research. Our future ability to adapt to geomorphic changes in the critical zone very much hinges upon how well landform scientists comprehend the dynamics of Earth’s diverse surfaces. This Treatise on Geomorphology provides a useful synthesis of the state of the discipline, as well as highlighting productive research directions, that Educators and students/researchers will find useful. Geomorphology has advanced greatly in the last 10 years to become a very interdisciplinary field. Undergraduate students looking for term paper topics, to graduate students starting a literature review for their thesis work, and professionals seeking a concise summary of a particular topic will find the answers they need in this broad reference work which has been designed and written to accommodate their diverse backgrounds and levels of understanding Editor-in-Chief, Prof. J. F. Shroder of the University of Nebraska at Omaha, is past president of the QG&G section of the Geological Society of America and present Trustee of the GSA Foundation, while being well respected in the geomorphology research community and having won numerous awards in the field. A host of noted international geomorphologists have contributed state-of-the-art chapters to the work. Readers can be guaranteed that every chapter in this extensive work has been critically reviewed for consistency and accuracy by the World expert Volume Editors and by the Editor-in-Chief himself No other reference work exists in the area of Geomorphology that offers the breadth and depth of information contained in this 14-volume masterpiece. From the foundations and history of geomorphology through to geomorphological innovations and computer modelling, and the past and future states of landform science, no "stone" has been left unturned!
"Given the sheer scale of the topic under consideration here, Professor Gregory does well to condense it into bite-size pieces for the reader. I recommend this text to all undergraduate students of physical geography and earth sciences, particularly to those in their first and second years... This book is a comprehensive and (crucially) inexpensive text that will provide students with a useful source on geomorphology." - Lynda York, The Geographical Journal "I would highly recommend this to anyone doing geology or geography at university as a ′go to′ book for geomorphology and landform." - Sara Falcone, Teaching Earth Science "An excellent source of information for anyone who needs a well-informed, easy to use reference volume to introduce them to the fascinating complexities of the earth’s land surface, past, present and future." - Angela Gurnell, Queen Mary, University of London This introductory text details the land surface of the earth in a readable style covering the major issues, key themes and sensitivities of the environments/landscape. Emphasising the major ideas and their development, each chapter includes case studies and details of influential scientists (not necessarily geomorphologists) who have contributed to the progress of understanding. Providing a very clear explanation of the understanding achieved and of the debates that have arisen, the book is comprised of 12 chapters in four sections: Visualising the land surface explains and explores the composition of the land surface and outlines how it has been studied. Dynamics of the land surface considers the dynamics affecting the earth′s land surface including its influences, processes and the changes that have occurred. Environments of the land surface looks to understand the land surface in major world regions highlighting differences between the areas. Management of the land surface is an examination of the current and future prospects of the management of the earth′s land surface. With pedagogical features including further reading, questions for discussion and a glossary, this original, lively text is authored by one of the leading experts in the field and will be core reading for first and second year undergraduates on all physical geography courses.
This book, the first in the Cambridge Nonlinear Science Series, presents the fundamentals of chaos theory in conservative systems, providing a systematic study of the theory of transitional states of physical systems which lie between deterministic and chaotic behaviour.