Download Free Weather Disasters In The South China Sea And Surrounding Regions Observations Theories Data Assimilation And Numerical Forecasting Book in PDF and EPUB Free Download. You can read online Weather Disasters In The South China Sea And Surrounding Regions Observations Theories Data Assimilation And Numerical Forecasting and write the review.

The South China Sea (SCS) is the linkage between the western Pacific Ocean and the Indian Ocean. Its weather/climate variations are regarded as an important factor influencing social and economic development. The SCS and its surrounding regions suffer from various weather disasters (e.g., typhoons, extreme rainfall, sea fog, severe convection, tornado, and wind hazards), which are serious threats to life and property. As such, accurate nowcasting is life-critical in this area. However, it is still a worldwide challenge to improve the forecast accuracy due to less understanding of the formation mechanism, evolution pattern, internal structure, and physical processes. As a dominant physical process, the ocean-atmosphere interaction plays an important role in affecting the weather/climate system and disasters over the SCS and surrounding regions, particularly vertical mixing between the interface of ocean and atmosphere. This research topic aims to provide an in-depth understanding of the physical processes related to these disasters, applications of data assimilation, and the development of forecasting techniques, which are essential to enhance disaster prevention and mitigation capabilities. In addition, in-depth research of these disasters and their impacts could help to uncover the hazard-causing characteristics and establish a corresponding risk assessment system.
Accurate and timely forecasting of hazardous weather events induced by meso-scale convection systems (MCSs) is the key to safeguarding lives and property. Yet the MCS forecasting is challenging due to imperfect initial numerical conditions that lack meso-scale convective information and multi-scale dynamic and thermodynamic consistency. Remote sensing observations are the primary source of estimating weather conditions, such as moisture, wind velocity, and precipitation. It is of fundamental pivotality to develop data assimilation technologies to enhance applications of multi-source observations. Performance assessments of new types of observations facilitate the network designment for regional- and storm-scale numerical models. This Research Topic seeks submissions underscoring the improvement of the accuracy of MCS predictions, warnings, and decision support for high-impact weather events as well as observation network designs.
This book presents a current review of the science of monsoon research and forecasting. The contents are based on the invited reviews presented at the World Meteorological Organization''s Fourth International Workshop on Monsoons in late 2008, with subsequent manuscripts revised from 2009 to early 2010. The book builds on the concept that the monsoons in various parts of the globe can be viewed as components of an integrated global monsoon system, while emphasizing that significant region-specific characteristics are present in individual monsoon regions. The topics covered include all major monsoon regions and time scales (mesoscale, synoptic, intraseasonal, interannual, decadal, and climate change). It is intended to provide an updated comprehensive review of the current status of knowledge, modeling capability, and future directions in the research of monsoon systems around the world.
The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.
This book is the standard reference based on roughly 20 years of research on atmospheric rivers, emphasizing progress made on key research and applications questions and remaining knowledge gaps. The book presents the history of atmospheric-rivers research, the current state of scientific knowledge, tools, and policy-relevant (science-informed) problems that lend themselves to real-world application of the research—and how the topic fits into larger national and global contexts. This book is written by a global team of authors who have conducted and published the majority of critical research on atmospheric rivers over the past years. The book is intended to benefit practitioners in the fields of meteorology, hydrology and related disciplines, including students as well as senior researchers.
This 2001 book provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The design features and operation of practical radar systems are highlighted throughout the book in order to illustrate important theoretical foundations. The authors begin by discussing background topics such as electromagnetic scattering, polarization, and wave propagation. They then deal in detail with the engineering aspects of pulsed Doppler polarimetric radar, including the relevant signal theory, spectral estimation techniques, and noise considerations. They close by examining a range of key applications in meteorology and remote sensing. The book will be of great use to graduate students of electrical engineering and atmospheric science as well as to practitioners involved in the applications of polarimetric radar systems.
This book deals primarily with monitoring, prediction and understanding of Tropical Cyclones (TCs). It was envisioned to serve as a teaching and reference resource at universities and academic institutions for researchers and post-graduate students. It has been designed to provide a broad outlook on recent advances in observations, assimilation and modeling of TCs with detailed and advanced information on genesis, intensification, movement and storm surge prediction. Specifically, it focuses on (i) state-of-the-art observations for advancing TC research, (ii) advances in numerical weather prediction for TCs, (iii) advanced assimilation and vortex initialization techniques, (iv) ocean coupling, (v) current capabilities to predict TCs, and (vi) advanced research in physical and dynamical processes in TCs. The chapters in the book are authored by leading international experts from academic, research and operational environments. The book is also expected to stimulate critical thinking for cyclone forecasters and researchers, managers, policy makers, and graduate and post-graduate students to carry out future research in the field of TCs.
Contents: 1.