Download Free Weakly Nonlinear Systems And Bifurcation Of Higher Dimensional Tori Book in PDF and EPUB Free Download. You can read online Weakly Nonlinear Systems And Bifurcation Of Higher Dimensional Tori and write the review.

The year 1986 marked the sesquicentennial of the publication in 1836 of J Sturm's memoir on boundary value problems for second order equations. In July 1986, the Canadian Mathematical Society sponsored the International Conference on Oscillation, Bifurcation and Chaos. This volume contains the proceedings of this conference.
This volume is an account of the lectures delivered at the international Conference ``Singularities and Dynamical Systems-83''. The main purpose of the Conference was to create conditions of scientific contact between mathematicians and physicists who have singularities and dynamical systems as common interests.
This edited volume provides insights into and tools for the modeling, analysis, optimization, and control of large-scale networks in the life sciences and in engineering. Large-scale systems are often the result of networked interactions between a large number of subsystems, and their analysis and control are becoming increasingly important. The chapters of this book present the basic concepts and theoretical foundations of network theory and discuss its applications in different scientific areas such as biochemical reactions, chemical production processes, systems biology, electrical circuits, and mobile agents. The aim is to identify common concepts, to understand the underlying mathematical ideas, and to inspire discussions across the borders of the various disciplines. The book originates from the interdisciplinary summer school “Large Scale Networks in Engineering and Life Sciences” hosted by the International Max Planck Research School Magdeburg, September 26-30, 2011, and will therefore be of interest to mathematicians, engineers, physicists, biologists, chemists, and anyone involved in the network sciences. In particular, due to their introductory nature the chapters can serve individually or as a whole as the basis of graduate courses and seminars, future summer schools, or as reference material for practitioners in the network sciences.
This is the inaugural volume of a new book series published under the auspices of the St. Petersburg Mathematical Society. The book contains contributions by some of the leading mathematicians in St. Petersburg. Ranging over a wide array of topics, these papers testify to the diverse interests and productive mathematical life of the St. Petersburg Mathematical Society.
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.