Download Free Weak Interaction Of Elementary Particles Book in PDF and EPUB Free Download. You can read online Weak Interaction Of Elementary Particles and write the review.

The book provides theoretical and phenomenological insights on the structure of matter, presenting concepts and features of elementary particle physics and fundamental aspects of nuclear physics. Starting with the basics (nomenclature, classification, acceleration techniques, detection of elementary particles), the properties of fundamental interactions (electromagnetic, weak and strong) are introduced with a mathematical formalism suited to undergraduate students. Some experimental results (the discovery of neutral currents and of the W± and Z0 bosons; the quark structure observed using deep inelastic scattering experiments) show the necessity of an evolution of the formalism. This motivates a more detailed description of the weak and strong interactions, of the Standard Model of the microcosm with its experimental tests, and of the Higgs mechanism. The open problems in the Standard Model of the microcosm and macrocosm are presented at the end of the book. For example, the CP violation currently measured does not explain the matter-antimatter asymmetry of the observable universe; the neutrino oscillations and the estimated amount of cosmological dark matter seem to require new physics beyond the Standard Model. A list of other introductory texts, work reviews and some specialized publications is reported in the bibliography. Translation from the Italian Language Edition "Particelle e interazioni fondamentali" by Sylvie Braibant, Giorgio Giacomelli, and Maurizio Spurio Copyright © Springer-Verlag Italia, 2009 Springer-Verlag Italia is part of Springer Science+Business Media All Rights Reserved
The book provides theoretical and phenomenological insights on the structure of matter, presenting concepts and features of elementary particle physics and fundamental aspects of nuclear physics. Starting with the basics (nomenclature, classification, acceleration techniques, detection of elementary particles), the properties of fundamental interactions (electromagnetic, weak and strong) are introduced with a mathematical formalism suited to undergraduate students. Some experimental results (the discovery of neutral currents and of the W± and Z0 bosons; the quark structure observed using deep inelastic scattering experiments) show the necessity of an evolution of the formalism. This motivates a more detailed description of the weak and strong interactions, of the Standard Model of the microcosm with its experimental tests, and of the Higgs mechanism. The open problems in the Standard Model of the microcosm and macrocosm are presented at the end of the book.
Gauge Theory of Weak Interactions treats the unification of electromagnetic and weak interactions and considers related phenomena. First, the Fermi theory of beta decay is presented, followed by a discussion of parity violation, clarifying the importance of symmetries. Then the concept of a spontaneously broken gauge theory is introduced, and all necessary mathematical tools are carefully developed. The "standard model" of unified electroweak interactions is thoroughly discussed including current developments. The final chapter contains an introduction to unified theories of strong and electroweak interactions. Numerous solved examples and problems make this volume uniquely suited as a text for an advanced course. Thisfourth edition has been carefully revised.
In recent years, the study of weak interaction and its relationship with the other fundamnetal interactions of nature has progressed rapidly. Weak interactions of leptons and quarks provides an up-to-date account of this continuing research. The Introduction discusses early models and historical developments in the understanding of the weak force. The authors then give a clear presentation of the modern theoretical basis of weak interactions, going on to discuss recent advances in the field. These include development of the eletroweak gauge theory, and the discovery of neutral currents and of a host of new particles. There is also a chapter devoted entirely to neutrino astrophysics. Its straightforward style and its emphasis on experimental results will make this book an excellent source for students (problem sets are included at the end of each chapter) and experimentalists in the field. Physicists whose speciality lies outside the study of elementary particle physics will also find it useful.
This is a selection from over 250 papers published by Abdus Salam. Professor Salam has been Professor of Theoretical Physics at Imperial College, London and Director of the International Centre for Theoretical Physics in Trieste, for which he was largely responsible for creating. He is one of the most distinguished theoretical physicists of his generation and won the Nobel Prize for Physics in 1979 for his work on the unification of electromagnetic and weak interactions. He is well known for his deep interest in the development of scientific research in the third world (to which ICTP is devoted) and has taken a leading part in setting up the Third World Academy. His research work has ranged widely over quantum field theory and all aspects of the theory of elementary particles and more recently into other fields, including high-temperature superconductivity and theoretical biology. The papers selected represent a cross section of his work covering the entire period of 50 years from his student days to the present.
The fourth edition includes new developments, in particular a new section on the double beta decay including a discussion of the possibility of a neutrinoless decay and its implications for the standard model.
International Series of Monographs in Natural Philosophy, Volume 5: Weak Interaction of Elementary Particles focuses on the composition, properties, and reactions of elementary particles and high energies. The book first discusses elementary particles. Concerns include isotopic invariance in the Sakata model; conservation of fundamental particles; scheme of isomultiplets in the Sakata model; universal, unitary-symmetric strong interaction; and universal weak interaction. The text also focuses on spinors, amplitudes, and currents. Wave function, calculation of traces, five bilinear covariants, and electromagnetic interaction are explained. The text also discusses charge conjugation, inversion of coordinates, and time reversal; weak interaction between leptons; and leptonic decays of strongly interacting particles. The text also explains strangeness conserving leptonic decays. Conservation of the vector current; electromagnetic properties of protons and neutrons; vector coupling constant; and relationships between weak and electronic form factors are underscored. The book also discusses weak interaction at small distances. Intermediate bosons, local four-fermion interactions, and statement of the problem are explained. The text is a vital reference for readers interested in the composition, properties, and reactions of elementary particles and high energies.
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
This particle physics textbook for senior undergraduates and early graduates explains the Standard Model of particle physics, both the theory and its experimental basis. The point of view is thoroughly modern. Theory relevant to the experiments is developed in detail but in a simplified way without needing full knowledge of quantum field theory.
ACCOUNTING PRINCIPLES Meeting the need for a coherently written and comprehensive compendium combining field theory and particle physics for advanced students and researchers, this volume directly links the theory to the experiments. It is clearly divided into two sections covering approaches to field theory and the Standard Model, and rounded off with numerous useful appendices. A timely work for high energy and theoretical physicists, as well as astronomers, graduate students and lecturers in physics. From the contents: Particles and Fields Lorentz Invariance Dirac Equation Field Quantization Scattering Matrix QED: Quantum Electrodynamics Radiative Corrections and Tests of Qed Symmetries Path Integral : Basics Path Integral Approach to Field Theory Accelerator and Detector Technology Spectroscopy The Quark Model Weak Interaction Neutral Kaons and CP Violation Hadron Structure Gauge Theories Appendices Volume 2 (2013, ISBN 3-527-40966-1) will concentrate on the main aspects of the Standard Model by addressing its recent developments and future prospects. Furthermore, it will give some thought to intriguing ideas beyond the Standard Model, including the Higgs boson, the neutrino, the concepts of the Grand Unified Theory and supersymmetry, axions, and cosmological developments.