Download Free Weak And Strong Field Nonlinear Optical Interactions In Semiconductor Quantum Wells Book in PDF and EPUB Free Download. You can read online Weak And Strong Field Nonlinear Optical Interactions In Semiconductor Quantum Wells and write the review.

Recent investigations on the nonlinear optical response of semiconductor quantum wells in a strong perpendicular magnetic field, H, are reviewed. After some introductory material the evolution of the linear optical properties of GaAs QW's as a function of H is discussed; an examination is made of how the magneto-excitons (MX) extrapolate continuously between quasi-2D QW excitons (X) when H = 0, and pairs of Landau levels (LL) when H --> (infinity). Next, femtosecond time resolved investigations of their nonlinear optical response are presented; the evolution of MX-MX interactions with increasing H is stressed. Finally, how, as the dimensionality is reduced by application of H, the number of scattering channels is limited and relaxation of electron-hole pairs is affected. How nonlinear optical spectroscopy can be exploited to access the relaxation of angular momentum within magneto-excitons is also discussed.
The nonlinear optical response of Semiconductor Quantum Wells, Organic Superlattices and Conjugated Polyenes was calculated using collective electronic coordinates, which represent the joint dynamics of electron-hole pairs. The use of femtosecond four-wave mixing spectroscopy to probe the nature of electronic States and Exciton and free-carrier interactions in these systems was explored. The formation and dynamics of quasiparticles involving electrons dressed by nuclear deformations in conjugated polymers was studied. The Si natures of charged solitons, neutral solitons, polarons and bipolarons in the resonant and off-resonant optical susceptibilities of conjugated polymers were calculated using the Pariser-Parr-Pople (PPP) model. The optical response was obtained by solving equations of motion for the reduced single-electron density matrix, derived using the time dependent Hartree-Fock (TDHF) approximation. The approach relates the optical Signals directly to the dynamics of charges and bond orders (electronic coherences) induced by the radiation field and uses only ground-state information, thus avoiding the explicit calculation of excited states. A Density-Matrix-Electronic-Oscillator representation was employed for calculating the third order nonlinar A optical response of semiconductor quantum dots in the limits of weak and strong exciton confinement. The nonlocal electrodynamics of arrays of quantum dots was treated exactly using Green function techniques. The research program included the development of software which uses the newly developed algorithms in the design of new optical materials.
Quantum well devices have been the objects of intensive research during the last two decades. Some of the devices have matured into commercially useful products and form part of modern electronic circuits. Some others require further dev- opment, but have the promise of being useful commercially in the near future. Study of the devices is, therefore, gradually becoming compulsory for electronics specialists. The functioning of the devices, however, involve aspects of physics which are not dealt with in the available text books on the physics of semicond- tor devices. There is, therefore, a need for a book to cover all these aspects at an introductory level. The present book has been written with the aim of meeting this need. In fact, the book grew out of introductory lectures given by the author to graduate students and researchers interested in this rapidly developing area of electron devices. The book covers the subjects of heterostructure growth techniques, band-offset theory and experiments, electron states, electron-photon interaction and related phenomena, electron transport and the operation of electronic, opto-electronic and photonic quantum well devices. The theory as well as the practical aspects of the devices are discussed at length. The aim of the book is to provide a comprehensive treatment of the physics underlying the various devices. A reader after going through the book should find himself equipped to deal with all kinds of quantum well devices.
Session 1 Elementary Excitations and Excitation Transport.- Picosecond Resolved Optically Driven Phonon Dynamics.- Relaxation and Propagation of High Frequency Phonons in Thin Crystalline Plates After Intense Laser Pumping.- Evolution in Real Time and Space of Short Polariton Pulses in Crystals.- Quasielastic Electronic Light Scattering in Semiconductors at Low Concentrations of Current Carriers.- Condensed Matter Science With Far Infra Red Free Electron Lasers (Abstract).- Nonequilibrium Terahertz Range Acoustic Phonons and Luminescence of Excitons in Semiconductors.- Session II Optical Properties of Surfaces and Interfaces.- Nonlinear Optical Studies of Molecular Adsorbates.- Enhancement of Exciton Transition Probabilities in Ultrathin Films of Cadmium Telluride.- Studies of Semiconductor Surfaces and Interfaces by Three Wave Mixing Spectroscopy (Abstract).- Time-Resolved Resonant Reflection of Light.- Femtosecond Photoemission Studies of Image Potential and Electron Dynamics in Metals.- High Intensity, Ultrashort Pulse Laser Heated Solids.- Session III Optical Studies of Growth, Instabilities and Pattern Formation.- Control of Transversal Interactions in Nonlinear Optics: New Spatio-Temporal Effects in Nonlinear Wave Dynamics (Abstract).- Synchronization of Atomic Quantum Transitions by Light Pulses.- Chaos in Nonlinear Optics.- Self-Organizaiton and Spatio-Temporal Chaos in Phase-Locked Semiconductor Laser Arrays (Abstract).- Competitive and Cooperative Dynamics in Optical Neural Networks (Abstract).- Transitions Between Ordered and Disordered Solid-Melt Patterns Formed on Silicon by Continuous Laser Beams: Competition Between Electrodynamics and Thermodynamics.- Session IV Elementary Excitations and Excitation Transport.- Light Scattering in Oxide Superconductors.- Raman Scattering in High-Tc Superconductors YBa2Cu3Ox With Different Oxygen Contents.- Raman Scattering from High Temperature Superconductors.- Decay of Exciton Gratings in Anthracene: Anisotropy of Lowest Exciton Bands and Coexistence of Longpath and Shortpath Waveguide Modes.- Excitation Transport in Polymeric Solids.- Vibron Lifetimes in Molecular Crystals.- Session V Optical Properties of Critical Phenomena Random Systems, and Coherent Phenomena.- Anomalies of the Elastic Light Scattering at Phase Transitions in Crystals with Point Defects.- Dynamical Fluctuations in a Dipolar Glass.- Localization of Light in Random Media (Abstract).- Quantum Optic and Transient Effects of Excitonic Polaritons, and Properties of Phonoritons.- Nonclassical Field Correlations in Quantum Optics (Abstract).- Phase-Conjugated Wave Enhanced by Weak Localization of Exciton-Polaritons.- Session VI Nonlinear Optical Properties of Semiconductors Organics and Fibers.- The Historical Relationship Between Nonlinear Optics and Condensed Matter (Abstract).- Optical Nonlinearities Enhanced by Carrier Transport.- Organic Nonlinear Optical Materials and Devices for Optoelectronics (Abstract).- Nonlinear Optical Susceptibilities of Surface Layers of Metals and Super- and Semiconductors Related to Electronic Structure and Crystal Symmetry.- Second Harmonic Generation in Optical Fibers.- Nonlinear Optical Probes of Glassy Polymers.- Session VII Quantum Wells.- Photoluminescence of Hot Electrons and Scattering Processes in Quantum-Well Structures.- High Resolution Nonlinear Laser Spectroscopy Measurements of Exciton Dynamics in GaAs Quantum Well Structures.- Optical Spectroscopy in the Regime of the Fractional Quantum Hall Effect.- Geminate Recombination in MQW Structures in a Magnetic Field.- Investigation of Two-Electron-Hole Pair Resonances in Semiconductor Quantum Dots.- Many Body Effects in Homogeneous Quasi 2D Electron-Hole Plasma in Undoped and Modulation Doped InGaAs Single Quantum Wells.- Session VIII Recent Significant Developments.- Pulsed Diffusing-Wave Spectroscopy in Dense Colloids.- Waves on Corrugated Surfaces: K-Gaps and Enhanced Backscattering.- Black Hole Radiation: Can Vir...
Quantum Wells, Wires and Dots Second Edition: Theoretical andComputational Physics of Semiconductor Nanostructures providesall the essential information, both theoretical and computational,for complete beginners to develop an understanding of how theelectronic, optical and transport properties of quantum wells,wires and dots are calculated. Readers are lead through a series ofsimple theoretical and computational examples giving solidfoundations from which they will gain the confidence to initiatetheoretical investigations or explanations of their own. Emphasis on combining the analysis and interpretation ofexperimental data with the development of theoretical ideas Complementary to the more standard texts Aimed at the physics community at large, rather than just thelow-dimensional semiconductor expert The text present solutions for a large number of realsituations Presented in a lucid style with easy to follow steps related toaccompanying illustrative examples