Download Free Wavelet Transform And Complexity Book in PDF and EPUB Free Download. You can read online Wavelet Transform And Complexity and write the review.

Wavelet Transform and Complexity presents high-level content on the fascinating field of wavelet transform and its applications in real-world phenomena. Divided into two parts, Analysis and Real-World Applications, the book describes the application of the wavelet method to several interesting complex systems across various disciplines. The book is designed for students, postdocs, and researchers interested in studying the wavelet method and its applications.
This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York University and ÉcolePolytechnique in Paris. - Provides a broad perspective on the principles and applications of transient signal processing with wavelets - Emphasizes intuitive understanding, while providing the mathematical foundations and description of fast algorithms - Numerous examples of real applications to noise removal, deconvolution, audio and image compression, singularity and edge detection, multifractal analysis, and time-varying frequency measurements - Algorithms and numerical examples are implemented in Wavelab, which is a Matlab toolbox freely available over the Internet - Content is accessible on several level of complexity, depending on the individual reader's needs New to the Second Edition - Optical flow calculation and video compression algorithms - Image models with bounded variation functions - Bayes and Minimax theories for signal estimation - 200 pages rewritten and most illustrations redrawn - More problems and topics for a graduate course in wavelet signal processing, in engineering and applied mathematics
Advanced undergraduate and beginning graduate students, faculty, researchers and practitioners in signal processing, telecommunications, and computer science, and applied mathematics. It assumes a background of Fourier series and transforms and of linear algebra and matrix methods. This primer presents a well balanced blend of the mathematical theory underlying wavelet techniques and a discussion that gives insight into why wavelets are successful in signal analysis, compression, dection, numerical analysis, and a wide variety of other theoretical and practical applications. It fills a gap in the existing wavelet literature with its unified view of expansions of signals into bases and frames, as well as the use of filter banks as descriptions and algorithms.
Due to its inherent time-scale locality characteristics, the discrete wavelet transform (DWT) has received considerable attention in signal/image processing. Wavelet transforms have excellent energy compaction characteristics and can provide perfect reconstruction. The shifting (translation) and scaling (dilation) are unique to wavelets. Orthogonality of wavelets with respect to dilations leads to multigrid representation. As the computation of DWT involves filtering, an efficient filtering process is essential in DWT hardware implementation. In the multistage DWT, coefficients are calculated recursively, and in addition to the wavelet decomposition stage, extra space is required to store the intermediate coefficients. Hence, the overall performance depends significantly on the precision of the intermediate DWT coefficients. This work presents new implementation techniques of DWT, that are efficient in terms of computation, storage, and with better signal-to-noise ratio in the reconstructed signal.
The first book to provide a detailed discussion of the application of wavelets in wireless communications, this is an invaluable source of information for graduate students, researchers, and telecommunications engineers, managers and strategists. It overviews applications, explains how to design new wavelets and compares wavelet technology with existing OFDM technology. • Addresses the applications and challenges of wavelet technology for a range of wireless communication domains • Aids in the understanding of Wavelet Packet Modulation and compares it with OFDM • Includes tutorials on convex optimisation, spectral factorisation and the design of wavelets • Explains design methods for new wavelet technologies for wireless communications, addressing many challenges, such as peak-to-average power ratio reduction, interference mitigation, reduction of sensitivity to time, frequency and phase offsets, and efficient usage of wireless resources • Describes the application of wavelet radio in spectrum sensing of cognitive radio systems.
Wavelet Analysis and its Applications, Volume 1: An Introduction to Wavelets provides an introductory treatise on wavelet analysis with an emphasis on spline-wavelets and time-frequency analysis. This book is divided into seven chapters. Chapter 1 presents a brief overview of the subject, including classification of wavelets, integral wavelet transform for time-frequency analysis, multi-resolution analysis highlighting the important properties of splines, and wavelet algorithms for decomposition and reconstruction of functions. The preliminary material on Fourier analysis and signal theory is covered in Chapters 2 and 3. Chapter 4 covers the introductory study of cardinal splines, while Chapter 5 describes a general approach to the analysis and construction of scaling functions and wavelets. Spline-wavelets are deliberated in Chapter 6. The last chapter is devoted to an investigation of orthogonal wavelets and wavelet packets. This volume serves as a textbook for an introductory one-semester course on "wavelet analysis for upper-division undergraduate or beginning graduate mathematics and engineering students.
This book provides an in-depth, integrated, and up-to-date exposition of the topic of signal decomposition techniques. Application areas of these techniques include speech and image processing, machine vision, information engineering, High-Definition Television, and telecommunications. The book will serve as the major reference for those entering the field, instructors teaching some or all of the topics in an advanced graduate course and researchers needing to consult an authoritative source.n The first book to give a unified and coherent exposition of multiresolutional signal decomposition techniquesn Classroom tested textbook clearly describes the commonalities among three key methods-transform coding, and wavelet transformsn Gives comparative performance evaluations of many proposed techniques
The main content of this book is related to construction of analytical solutions of differential equations and systems of mathematical physics, to development of analytical methods for solving boundary value problems for such equations and the study of properties of their solutions. A wide class of equations (elliptic, parabolic, and hyperbolic) is considered here, on the basis of which complex wave processes in biological and physical media can be simulated.The method of generalized functions presented in the book for solving boundary value problems of mathematical physics is universal for constructing solutions of boundary value problems for systems of linear differential equations with constant coefficients of any type. In the last sections of the book, the issues of calculating functions based on Padé approximations, binomial expansions, and fractal representations are considered. The book is intended for specialists in the field of mathematical and theoretical physics, mechanics and biophysics, students of mechanics, mathematics, physics and biology departments of higher educational institutions.
The textbook, Introduction to Wavelet Transforms provides basics of wavelet transforms in a self-contained manner. Applications of wavelet transform theory permeate our daily lives. Therefore it is imperative to have a strong foundation for this subject. Features No prior knowledge of the subject is assumed. Sufficient mathematical background is provided to complete the discussion of different topics. Different topics have been properly segmented for easy learning. This makes the textbook pedagogical and unique. Notation is generally introduced in the definitions. Relatively easy consequences of the definitions are listed as observations, and important results are stated as theorems. Examples are provided for clarity and to enhance reader's understanding of the subject. Each chapter also has a problem section. A majority of the problems are provided with sufficient hints. The textbook can be used either in an upper-level undergraduate or first-year graduate class in electrical engineering, or computer science, or applied mathematics. It can also be used by professionals and researchers in the field who would like a quick review of the basics of the subject. About the Author Nirdosh Bhatnagar works in both academia and industry in Silicon Valley, California. He is also the author of a comprehensive two-volume work: Mathematical Principles of the Internet, published by the CRC Press in the year 2019. Nirdosh earned M.S. in Operations Research, and M.S. and Ph.D. in electrical engineering, all from Stanford University, Stanford, California.
This book illustrates how modern mathematical wavelet transform techniques offer fresh insights into the complex behavior of neural systems at different levels: from the microscopic dynamics of individual cells to the macroscopic behavior of large neural networks. It also demonstrates how and where wavelet-based mathematical tools can provide an advantage over classical approaches used in neuroscience. The authors well describe single neuron and populational neural recordings. This 2nd edition discusses novel areas and significant advances resulting from experimental techniques and computational approaches developed since 2015, and includes three new topics: • Detection of fEPSPs in multielectrode LFPs recordings. • Analysis of Visual Sensory Processing in the Brain and BCI for Human Attention Control; • Analysis and Real-time Classification of Motor-related EEG Patterns; The book is a valuable resource for neurophysiologists and physicists familiar with nonlinear dynamical systems and data processing, as well as for graduate students specializing in these and related areas.