Download Free Waveform Design For Active Sensing Systems Book in PDF and EPUB Free Download. You can read online Waveform Design For Active Sensing Systems and write the review.

Ideal for researchers and practitioners looking to develop and use computational algorithms for waveform design in diverse active sensing applications.
This book gives you a comprehensive overview of key optimization tools that can be used to design radar waveforms and adaptive signal processing strategies under practical constraints -- strategies such as power method-like iterations, coordinate descent, and majorization-minimization – that help you to meet the more and more stressing sensing system requirements. The book walks you through how radar waveform synthesis is obtained as the solution to a constrained optimization problem such as finite energy, unimodularity (or being constant-modulus), and finite or discrete-phase (potentially binary) alphabet, which are dictated by the practical limitations of the real systems. Several approaches in each of these broad frameworks are detailed and various applications of these optimization techniques are described. Focusing on a holistic approach rather than a problem-specific approach, the book shows you what you need to effectively formulate waveform design and understand the flexibility of the framework for adapting to your own specific needs. You’ll have full access to the tools and knowledge you need to design waveform with optimized correlation/cross-correlation properties for SISO/SIMO and MIMO radars, taking into account spectral constraints for cognitive rads, as well as coexistence with communications and mitigate possible Doppler and quantization errors, and more. The book also includes representative software codes that further help you generate the described solutions. With its unique style of covering mathematical results along with their applications from diverse areas, this is a much-needed, detailed handbook for industry researchers, scientists and designers including medical, marine, defense, and automotive companies. It is also an excellent resource for advanced courses on radar signal processing.
This is the first book to discuss current and future applications of waveform diversity and design in subjects such as radar and sonar, communications systems, passive sensing, and many other technologies. Waveform diversity allows researchers and system designers to optimize electromagnetic and acoustic systems for sensing, communications, electronic warfare or combinations thereof. It enables solutions to problems with how each system performs its own particular function as well as how it is affected by other systems and how those other systems may likewise be affected. It is an excellent standalone introduction to waveform diversity and design, which takes a high potential technology area and makes it visible to other researchers, as well as young engineers.
Specialized resource providing detailed coverage of recent advances in theory and applications of sparse arrays Sparse Arrays for Radar, Sonar, and Communications discusses various design approaches of sparse arrays, including those seeking to increase the corresponding one-dimensional and two-dimensional virtual array apertures, as well as others that configure the arrays based on solutions of constrained minimization problems. The latter includes statistical bounds and signal-to-interference and noise ratio; in this respect, the book utilizes the recent strides made in convex optimizations and machine learning for sparse array configurability in both fixed and dynamic environments. Similar ideas are presented for sparse array-waveform design. The book also discusses the role of sparse arrays in improving target detection and resolution in radar, improving channel capacity in massive MIMO, and improving underwater target localization in sonar. It covers different sparse array topologies, and provides various approaches that deliver the optimum and semi-optimum sparse array transceivers. . Edited by a world-leading expert in Radar and Signal Processing and contributed to by world-class researchers in their respective fields, Sparse Arrays for Radar, Sonar, and Communications covers topics including: Utilizing sparse arrays in emerging technologies and showing their offerings in various sensing and communications applications Applying sparse arrays to different environments and obtain superior performances over conventional uniform arrays Solving the localization, beamforming, and direction-finding problems using non-uniform array structures for narrowband and wideband signals Designing sparse array structures for both stationary and moving platforms that produce physical and synthesized array apertures. Using deep neural networks that learn the underlying complex nonlinear model and output the sparse array configuration using representations of the input data spatio-temporal observations Solving for optimum sparse array configurations and beamforming coefficients in sensing using iterative convex optimization methods Providing complete coverage of the recent considerable progress in sparse array design and configurations, Sparse Arrays for Radar, Sonar, and Communications is an essential resource on the subject for graduate students and engineers pursuing research and applications in the broad areas of active/passive sensing and communications.
Radar has been an important topic since its introduction, in a military context, during World War II. Due to advances in technology, it has been necessary to refine the algorithms employed within the signal processing architecture. Hence, this book provides a series of chapters examining some topics in modern radar signal processing. These include synthetic aperture radar, multiple-input multiple-output radar, as well as a series of chapters examining other key issues relevant to the central theme of the book.
A comprehensive review of position location technology — from fundamental theory to advanced practical applications Positioning systems and location technologies have become significant components of modern life, used in a multitude of areas such as law enforcement and security, road safety and navigation, personnel and object tracking, and many more. Position location systems have greatly reduced societal vulnerabilities and enhanced the quality of life for billions of people around the globe — yet limited resources are available to researchers and students in this important field. The Handbook of Position Location: Theory, Practice, and Advances fills this gap, providing a comprehensive overview of both fundamental and cutting-edge techniques and introducing practical methods of advanced localization and positioning. Now in its second edition, this handbook offers broad and in-depth coverage of essential topics including Time of Arrival (TOA) and Direction of Arrival (DOA) based positioning, Received Signal Strength (RSS) based positioning, network localization, and others. Topics such as GPS, autonomous vehicle applications, and visible light localization are examined, while major revisions to chapters such as body area network positioning and digital signal processing for GNSS receivers reflect current and emerging advances in the field. This new edition: Presents new and revised chapters on topics including localization error evaluation, Kalman filtering, positioning in inhomogeneous media, and Global Positioning (GPS) in harsh environments Offers MATLAB examples to demonstrate fundamental algorithms for positioning and provides online access to all MATLAB code Allows practicing engineers and graduate students to keep pace with contemporary research and new technologies Contains numerous application-based examples including the application of localization to drone navigation, capsule endoscopy localization, and satellite navigation and localization Reviews unique applications of position location systems, including GNSS and RFID-based localization systems The Handbook of Position Location: Theory, Practice, and Advances is valuable resource for practicing engineers and researchers seeking to keep pace with current developments in the field, graduate students in need of clear and accurate course material, and university instructors teaching the fundamentals of wireless localization.
This book presents a collection of research findings and proposals on computer science and computer engineering, introducing readers to essential concepts, theories, and applications. It also shares perspectives on how cutting-edge and established methodologies and techniques can be used to obtain new and interesting results. Each chapter focuses on a specific aspect of computer science or computer engineering, such as: software engineering, complex systems, computational intelligence, embedded systems, and systems engineering. As such, the book will bring students and professionals alike up to date on key advances in these areas.
Recent advances in sensor technology and information processing afford a new flexibility in the design of waveforms for agile sensing. Sensors are now developed with the ability to dynamically choose their transmit or receive waveforms in order to optimize an objective cost function. This has exposed a new paradigm of significant performance improvements in active sensing: dynamic waveform adaptation to environment conditions, target structures, or information features. The manuscript provides a review of recent advances in waveform-agile sensing for target tracking applications. A dynamic waveform selection and configuration scheme is developed for two active sensors that track one or multiple mobile targets. A detailed description of two sequential Monte Carlo algorithms for agile tracking are presented, together with relevant Matlab code and simulation studies, to demonstrate the benefits of dynamic waveform adaptation. The work will be of interest not only to practitioners of radar and sonar, but also other applications where waveforms can be dynamically designed, such as communications and biosensing. Table of Contents: Waveform-Agile Target Tracking Application Formulation / Dynamic Waveform Selection with Application to Narrowband and Wideband Environments / Dynamic Waveform Selection for Tracking in Clutter / Conclusions / CRLB Evaluation for Gaussian Envelope GFM Chirp from the Ambiguity Function / CRLB Evaluation from the Complex Envelope
This book covers control theory signal processing and relevant applications in a unified manner. It introduces the area, takes stock of advances, and describes open problems and challenges in order to advance the field. The editors and contributors to this book are pioneers in the area of active sensing and sensor management, and represent the diverse communities that are targeted.
The author presents a unified treatment of this highly interdisciplinary topic to help define the notion of cognitive radio. The book begins with addressing issues such as the fundamental system concept and basic mathematical tools such as spectrum sensing and machine learning, before moving on to more advanced concepts and discussions about the future of cognitive radio. From the fundamentals in spectrum sensing to the applications of cognitive algorithms to radio communications, and discussion of radio platforms and testbeds to show the applicability of the theory to practice, the author aims to provide an introduction to a fast moving topic for students and researchers seeking to develop a thorough understanding of cognitive radio networks. Examines basic mathematical tools before moving on to more advanced concepts and discussions about the future of cognitive radio Describe the fundamentals of cognitive radio, providing a step by step treatment of the topics to enable progressive learning Includes questions, exercises and suggestions for extra reading at the end of each chapter Topics covered in the book include: Spectrum Sensing: Basic Techniques; Cooperative Spectrum Sensing Wideband Spectrum Sensing; Agile Transmission Techniques: Orthogonal Frequency Division Multiplexing Multiple Input Multiple Output for Cognitive Radio; Convex Optimization for Cognitive Radio; Cognitive Core (I): Algorithms for Reasoning and Learning; Cognitive Core (II): Game Theory; Cognitive Radio Network IEEE 802.22: The First Cognitive Radio Wireless Regional Area Network Standard, and Radio Platforms and Testbeds.