Download Free Wave Scattering In Complex Media From Theory To Applications Book in PDF and EPUB Free Download. You can read online Wave Scattering In Complex Media From Theory To Applications and write the review.

A collection of lectures on a variety of modern subjects in wave scattering, including fundamental issues in mesoscopic physics and radiative transfer, recent hot topics such as random lasers, liquid crystals, lefthanded materials and time-reversal, as well as modern applications in imaging and communication. There is a strong emphasis on the interdisciplinary aspects of wave propagation, including light and microwaves, acoustic and elastic waves, propagating in a variety of "complex" materials (liquid crystals, media with gain, natural media, magneto-optical media, photonic and phononic materials, etc.). It addresses many different items in contemporary research: mesoscopic fluctuations, localization, radiative transfer, symmetry aspects, and time-reversal. It also discusses new (potential) applications in telecommunication, soft matter and imaging.
An interdisciplinary introduction to the structural and scattering properties of complex photonic media, focusing on deterministic aperiodic structures and their conceptual roots in geometry and number theory. An essential tool for students at the graduate or advanced undergraduate level.
This IMA Volume in Mathematics and its Applications WAVE PROPAGATION IN COMPLEX MEDIA is based on the proceedings of two workshops: • Wavelets, multigrid and other fast algorithms (multipole, FFT) and their use in wave propagation and • Waves in random and other complex media. Both workshops were integral parts of the 1994-1995 IMA program on "Waves and Scattering." We would like to thank Gregory Beylkin, Robert Burridge, Ingrid Daubechies, Leonid Pastur, and George Papanicolaou for their excellent work as organizers of these meetings. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO, and the Office of Naval Research (ONR), whose financial support made these workshops possible. A vner Friedman Robert Gulliver v PREFACE During the last few years the numerical techniques for the solution of elliptic problems, in potential theory for example, have been drastically improved. Several so-called fast methods have been developed which re duce the required computing time many orders of magnitude over that of classical algorithms. The new methods include multigrid, fast Fourier transforms, multi pole methods and wavelet techniques. Wavelets have re cently been developed into a very useful tool in signal processing, the solu tion of integral equation, etc. Wavelet techniques should be quite useful in many wave propagation problems, especially in inhomogeneous and nonlin ear media where special features of the solution such as singularities might be tracked efficiently.
This monograph on multiple scattering of light by small particles is an ideal resource for science professionals, engineers, and graduate students.
The past decade has witnessed breakthroughs in the understanding of the wave localization phenomena and its implications for wave multiple scattering in inhomogeneous media. This book brings together review articles written by noted researchers in this field in a tutorial manner so as to give the readers a coherent picture of its status. It would be valuable both as an up-to-date reference for active researchers as well as a readable source for students looking to gain an understanding of the latest results.
One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.
Recent advances in wave propagation in random media are certainly consequences of new approaches to fundamental issues, as well as of a strong interest in potential applications. A collective effort has been made to present in this book the state of the art in fundamental concepts, as well as in biomedical imaging techniques. As an example, the recent introduction of wave chaos, and more specifically random matrix theory - an old tool from nuclear physics - to the study of multiple scattering, has pointed the way to a deeper understanding of wave coherence in complex media. At the same time, efficient new approaches for retrieving information from random media promise to allow wave imaging of small tumors in opaque tissues. Review chapters are written by experts in the field, with the aim of making the book accessible to the widest possible scientific audience: graduate students and research scientists in theoretical and applied physics, optics, acoustics, and biomedical physics.
This book contains review papers presented at the International Workshop on Wave Propagation, Scattering and Emission on Theory, Experiment, Simulation and Inversion (WPSE). The papers are of high quality, covering broad areas: a new mechanism of interaction of electromagnetic waves with complex media, remote sensing information, computational electromagnetics, etc. This book summarizes the most significant progress in wave propagation, encompassing theory, experiment, simulation, and inversion. It will also serve as a good reference for scientists in future research.List of Foreign Invited Speakers: Henry Bertoni (Brooklyn Polytechnic University), Lawrence Carin (Duke U), Al Chang (NASA, Goddard), Margaret Cheney (Rensselaer Polytech Institute), Weng Chew (U of Illinois at Urbana Champaign), Shane Cloude (AEL Consultants, UK), Adrian Fung (U of Texas at Arlington), Al Gasiewski (Environmental Tech Lab, NOAA), Martti Hallikainen (Helsinki U of Technology), Akira Ishimaru (U of Washington), Magdy Iskander (U of Hawaii), J A Kong (MIT), Roger Lang (George Washington U), Alex Maradudin (U of California at Irvine), Eric Michielssen (U of Illinois at Urbana Champaign), Eni Njoku (Caltech, Jet Propulsion Lab), Carey Rappaport (Northeastern U), Marc Saillard (Institut Fresnel), Kamal Sarabandi (U of Michigan), David R Smith (U of California at San Diego), Mitsuo Tateiba (Kyushu University), George Uslenghi (U of Illinois at Chicago), and Werner Wiesbeck (Karlsruhe U).
Including more than 70 papers, this invaluable source for researchers and students contains an editors' introduction with extensive references and chapters on seismic interferometry without equations, highlights of the history of seismic interferometry from 1968 until 2003, and offers a detailed overview of the rapid developments since 2004.
Fast algorithms for solving electromagnetic scattering problems.- 2d photonic crystals with cubic structure: asymptotic analysis.- On waves in random media in the diffusion-approximation regime.- Coherent effects in scattering from bounded random systems with discrete spectrum.- The interaction of microwaves with sea ice.- Electron in two-dimensional system with point scatterers and magnetic field.- On the propagation properties of surface waves.- Green's function, lattice sums and Rayleigh's identity for a dynamic scattering problem.- Study of seismogram envelopes based on the energy transport theory.- The panel clustering method in 3-d bem.- Propagation of electromagnetic waves in two-dimensional disordered systems.- Reciprocity and coherent backscattering of light.- Spatio-temporal distribution of seismic power for a random absorptive slab in a half space.