Download Free Wave Run Up On Beaches Book in PDF and EPUB Free Download. You can read online Wave Run Up On Beaches and write the review.

The motion of water on a uniformly sloping beach, just after a bore reaches the shore, is studied. The shllow-water equations are used to fomulate a singular hyperbolic problem, which is solved by the help of RIEMANN'S Method and of the trutural theory of quasilinear hyperbolic equations developed in gas dynmics. The shore line is found to advance suddenly with non-zero velocity and then to move up and down the beach with constant, negative acceleration. The solution s shown to contain limit lines indiating a rather unexpeted, secondary bore in the back-wsh. (Author).
While investigating the Tsunami wave project, a numerical method was devised to solve the initial boundary value problem for the equations of the non-linear shallow water theory. The case of one horizontal dimension was considered in a domain bounded by a shore at one end, with the motion of the shoreline taken into account. In addition, this method enabled the incident wave to be introduced at the seaward end of the domain. The water was assumed to be at rest in the domain until the incident wave arrived, and the bottom was assumed to slope uniformly. (Author).
The handbook contains a comprehensive compilation of topics that are at the forefront of many of the technical advances in ocean waves, coastal, and ocean engineering. More than 110 internationally recognized authorities in the field of coastal and ocean engineering have contributed articles in their areas of expertise to this handbook. These international luminaries are from highly respected universities and renowned research and consulting organizations around the world.
This book discusses the numerical simulation of water waves, which combines mathematical theories and modern techniques of numerical simulation to solve the problems associated with waves in coastal, ocean, and environmental engineering. Bridging the gap between practical mathematics and engineering, the book describes wave mechanics, establishment of mathematical wave models, modern numerical simulation techniques, and applications of numerical models in engineering. It also explores environmental issues related to water waves in coastal regions, such as pollutant and sediment transport, and introduces numerical wave flumes and wave basins. The material is self-contained, with numerous illustrations and tables, and most of the mathematical and engineering concepts are presented or derived in the text. The book is intended for researchers, graduate students and engineers in the fields of hydraulic, coastal, ocean and environmental engineering with a background in fluid mechanics and numerical simulation methods.
Waves in Oceanic and Coastal Waters describes the observation, analysis and prediction of wind-generated waves in the open ocean, in shelf seas, and in coastal regions with islands, channels, tidal flats and inlets, estuaries, fjords and lagoons. Most of this richly illustrated book is devoted to the physical aspects of waves. After introducing observation techniques for waves, both at sea and from space, the book defines the parameters that characterise waves. Using basic statistical and physical concepts, the author discusses the prediction of waves in oceanic and coastal waters, first in terms of generalised observations, and then in terms of the more theoretical framework of the spectral energy balance. He gives the results of established theories and also the direction in which research is developing. The book ends with a description of SWAN (Simulating Waves Nearshore), the preferred computer model of the engineering community for predicting waves in coastal waters.
A textbook that offers a unified treatment of the applications of hydrodynamics to marine problems. The applications of hydrodynamics to naval architecture and marine engineering expanded dramatically in the 1960s and 1970s. This classic textbook, originally published in 1977, filled the need for a single volume on the applications of hydrodynamics to marine problems. The book is solidly based on fundamentals, but it also guides the student to an understanding of engineering applications through its consideration of realistic configurations. The book takes a balanced approach between theory and empirics, providing the necessary theoretical background for an intelligent evaluation and application of empirical procedures. It also serves as an introduction to more specialized research methods. It unifies the seemingly diverse problems of marine hydrodynamics by examining them not as separate problems but as related applications of the general field of hydrodynamics. The book evolved from a first-year graduate course in MIT's Department of Ocean Engineering. A knowledge of advanced calculus is assumed. Students will find a previous introductory course in fluid dynamics helpful, but the book presents the necessary fundamentals in a self-contained manner. The 40th anniversary of this pioneering book offers a foreword by John Grue. Contents Model Testing • The Motion of a Viscous Fluid • The Motion of an Ideal Fluid • Lifting Surfaces • Waves and Wave Effects • Hydrodynamics of Slender Bodies
The practical engineer looking for an urgent solution to a sediment-related project often finds that the results of the relevant academic research are published in unfamiliar language in publications that are not easily available. Dynamics of marine sands bridges the gap between academic research and practical applications by summarising the research results in a unified form, backed up with worked examples and case studies. This comprehensive new book presents methods for calculating the various hydrodynamic and sediment dynamic quantities necessary for marine sediment transport applications, and recommends the most appropriate methods to use for engineering projects.