Download Free Wave Propagation In Randomly Layered Media With An Application To Time Reversal Book in PDF and EPUB Free Download. You can read online Wave Propagation In Randomly Layered Media With An Application To Time Reversal and write the review.

The content of this book is multidisciplinary by nature. It uses mathematical tools from the theories of probability and stochastic processes, partial differential equations, and asymptotic analysis, combined with the physics of wave propagation and modeling of time reversal experiments. It is addressed to a wide audience of graduate students and researchers interested in the intriguing phenomena related to waves propagating in random media. At the end of each chapter there is a section of notes where the authors give references and additional comments on the various results presented in the chapter.
This book presents the classical theorems about simply connected smooth 4-manifolds: intersection forms and homotopy type, oriented and spin bordism, the index theorem, Wall's diffeomorphisms and h-cobordism, and Rohlin's theorem. Most of the proofs are new or are returbishings of post proofs; all are geometric and make us of handlebody theory. There is a new proof of Rohlin's theorem using spin structures. There is an introduction to Casson handles and Freedman's work including a chapter of unpublished proofs on exotic R4's. The reader needs an understanding of smooth manifolds and characteristic classes in low dimensions. The book should be useful to beginning researchers in 4-manifolds.
This volume contains the proceedings of the NIMS Thematic Workshop on Mathematical and Statistical Methods for Imaging, which was held from August 10-13, 2010, at Inha University, Incheon, Korea. The goal of this volume is to give the reader a deep and unified understanding of the field of imaging and of the analytical and statistical tools used in imaging. It offers a good overview of the current status of the field and of directions for further research. Challenging problems are addressed from analytical, numerical, and statistical perspectives. The articles are devoted to four main areas: analytical investigation of robustness; hypothesis testing and resolution analysis, particularly for anomaly detection; new efficient imaging techniques; and the effects of anisotropy, dissipation, or attenuation in imaging.
The motion of water is governed by a set of mathematical equations which are extremely complicated and intractable. This is not surprising when one considers the highly diverse and intricate physical phenomena which may be exhibited by a given body of water. Recent mathematical advances have enabled researchers to make major progress in this field, reflected in the topics featured in this volume. Cutting-edge techniques and tools from mathematical analysis have generated strong rigorous results concerning the qualitative and quantitative physical properties of solutions of the governing equations. Furthermore, accurate numerical computations of fully-nonlinear steady and unsteady water waves in two and three dimensions have contributed to the discovery of new types of waves. Model equations have been derived in the long-wave and modulational regime using Hamiltonian formulations and solved numerically. This book brings together interdisciplinary researchers working in the field of nonlinear water waves, whose contributions range from survey articles to new research results which address a variety of aspects in nonlinear water waves. It is motivated by a workshop which was organised at the Erwin Schrödinger International Institute for Mathematics and Physics in Vienna, November 27-December 7, 2017. The key aim of the workshop was to describe, and foster, new approaches to research in this field. This is reflected in the contents of this book, which is aimed to stimulate both experienced researchers and students alike.
A range of experts contribute introductory-level lectures on active topics in the theory of water waves.
Waves generated by opportunistic or ambient noise sources and recorded by passive sensor arrays can be used to image the medium through which they travel. Spectacular results have been obtained in seismic interferometry, which open up new perspectives in acoustics, electromagnetics, and optics. The authors present, for the first time in book form, a self-contained and unified account of correlation-based and ambient noise imaging. In order to facilitate understanding of the core material, they also address a number of related topics in conventional sensor array imaging, wave propagation in random media, and high-frequency asymptotics for wave propagation. Taking a multidisciplinary approach, the book uses mathematical tools from probability, partial differential equations and asymptotic analysis, combined with the physics of wave propagation and modelling of imaging modalities. Suitable for applied mathematicians and geophysicists, it is also accessible to graduate students in applied mathematics, physics, and engineering.
As usual, some of the contributions to this 44th Séminaire de Probabilités were presented during the Journées de Probabilités held in Dijon in June 2010. The remainder were spontaneous submissions or were solicited by the editors. The traditional and historical themes of the Séminaire are covered, such as stochastic calculus, local times and excursions, and martingales. Some subjects already touched on in the previous volumes are still here: free probability, rough paths, limit theorems for general processes (here fractional Brownian motion and polymers), and large deviations. Lastly, this volume explores new topics, including variable length Markov chains and peacocks. We hope that the whole volume is a good sample of the main streams of current research on probability and stochastic processes, in particular those active in France.
This volume presents the proceedings of a workshop on Inverse Problems and Applications and a special session on Inverse Boundary Problems and Applications. Inverse problems arise in practical situations, such as medical imaging, exploration geophysics, and non-destructive evaluation where measurements made in the exterior of a body are used to deduce properties of the hidden interior. A large class of inverse problems arise from a physical situation modeled by partial differential equations. The inverse problem is to determine some coefficients of the equation given some information about solutions. Analysis of such problems is a fertile area for interaction between pure and applied mathematics. This interplay is well represented in this volume where several theoretical and applied aspects of inverse problems are considered. The book includes articles on a broad range of inverse problems including the inverse conductivity problem, inverse problems for Maxwell's equations, time reversal mirrors, ultrasound using elastic pressure waves, inverse problems arising in the environment, inverse scattering for the three-body problem, and optical tomography. Also included are several articles on unique continuation and on the study of propagation of singularities for hyperbolic equations in anisotropic media. This volume is suitable for graduate students and research mathematicians interested in inverse problems and applications.
This book represents the refereed proceedings of the Sixth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing and of the Second International Conference on Monte Carlo and Probabilistic Methods for Partial Differential Equations. These conferences were held jointly at Juan-les-Pins (France) in June 2004. The proceedings include carefully selected papers on many aspects of Monte Carlo methods, quasi-Monte Carlo methods, and the numerical solution of partial differential equations. The reader will be informed about current research in these very active areas.
This E-Book covers the research and the development of a novel generation of photonic devices for sensing applications. The E-Book starts with a brief review of basic photonic crystal (PhC) structure related concepts and describes the numerical and technological tools useful in the design and fabrication of devices based on PhCs. Next, the E-Book provides a selection of crossover topics emerging in the scientific community as breaking through researches, technologies and sciences for the development of novel technological platforms for physical, chemical and biological sensing. The E-Book ends with a description of the main PhC sensors to date by representing many of the exciting sensing applications that utilize photonic crystal structures.