Download Free Wave Mechanics Applied To Semiconductor Heterostructures Book in PDF and EPUB Free Download. You can read online Wave Mechanics Applied To Semiconductor Heterostructures and write the review.

Examines the basic electronic and optical properties of two- dimensional semiconductor heterostructures based on III-V and II-VI compounds. Explores various consequences of one-dimensional size-quantization on the most basic physical properties of heterolayers. Beginning with basic quantum mechanical properties of idealized quantum wells and superlattices, it discusses the occurrence of bound states when the heterostructure is imperfect or when it is shone with near bandgap light.
This is an overview of different models and mechanisms developed to describe the capture and relaxation of carriers in quantum-dot systems. Despite their undisputed importance, the mechanisms leading to population and energy exchanges between a quantum dot and its environment are not yet fully understood. The authors develop a first-order approach to such effects, using elementary quantum mechanics and an introduction to the physics of semiconductors. The book results from a series of lectures given by the authors at the Master’s level.
The most up-to-date book available on the physics of photonic devices This new edition of Physics of Photonic Devices incorporates significant advancements in the field of photonics that have occurred since publication of the first edition (Physics of Optoelectronic Devices). New topics covered include a brief history of the invention of semiconductor lasers, the Lorentz dipole method and metal plasmas, matrix optics, surface plasma waveguides, optical ring resonators, integrated electroabsorption modulator-lasers, and solar cells. It also introduces exciting new fields of research such as: surface plasmonics and micro-ring resonators; the theory of optical gain and absorption in quantum dots and quantum wires and their applications in semiconductor lasers; and novel microcavity and photonic crystal lasers, quantum-cascade lasers, and GaN blue-green lasers within the context of advanced semiconductor lasers. Physics of Photonic Devices, Second Edition presents novel information that is not yet available in book form elsewhere. Many problem sets have been updated, the answers to which are available in an all-new Solutions Manual for instructors. Comprehensive, timely, and practical, Physics of Photonic Devices is an invaluable textbook for advanced undergraduate and graduate courses in photonics and an indispensable tool for researchers working in this rapidly growing field.
Optics of Excitons in Confined Systems provides an overview of research in semiconductors that exhibit resonance enhanced optical nonlinearities in the frequency range close to the valence-conduction band gap. The book is divided into the following sections: quantum wells, wires, and dots; superlattices; nonlinear optical properties of confined systems; and effects of external fields on confined systems. Topics range from fundamental theory to more applied aspects of excitons in confined sytems.
Quantum Wells, Wires and Dots provides all the essential information, both theoretical and computational, to develop an understanding of the electronic, optical and transport properties of these semiconductor nanostructures. The book will lead the reader through comprehensive explanations and mathematical derivations to the point where they can design semiconductor nanostructures with the required electronic and optical properties for exploitation in these technologies. This fully revised and updated 4th edition features new sections that incorporate modern techniques and extensive new material including: Properties of non-parabolic energy bands Matrix solutions of the Poisson and Schrödinger equations Critical thickness of strained materials Carrier scattering by interface roughness, alloy disorder and impurities Density matrix transport modelling Thermal modelling Written by well-known authors in the field of semiconductor nanostructures and quantum optoelectronics, this user-friendly guide is presented in a lucid style with easy to follow steps, illustrative examples and questions and computational problems in each chapter to help the reader build solid foundations of understanding to a level where they can initiate their own theoretical investigations. Suitable for postgraduate students of semiconductor and condensed matter physics, the book is essential to all those researching in academic and industrial laboratories worldwide. Instructors can contact the authors directly ([email protected] / [email protected]) for Solutions to the problems.
Quantum Heterostructures provides a detailed description of the key physical and engineering principles of quantum semiconductor heterostructures. Blending important concepts from physics, materials science, and electrical engineering, it also explains clearly the behavior and operating features of modern microelectronic and optoelectronic devices. The authors begin by outlining the trends that have driven development in this field, most importantly the need for high-performance devices in computer, information, and communications technologies. They then describe the basics of quantum nanoelectronics, including various transport mechanisms. In the latter part of the book, they cover novel microelectronic devices, and optical devices based on quantum heterostructures. The book contains many homework problems and is suitable as a textbook for undergraduate and graduate courses in electrical engineering, physics, or materials science. It will also be of great interest to those involved in research or development in microelectronic or optoelectronic devices.
It is beneficial for technical personnel working in the field of microelectronics, optoelectronics, and photonics to get a good understanding of the physical foundations of modern semiconductor devices. Questions that technical personnel may ask are: How are electrons propagating in the periodic potential of a crystal lattice? What are the foundations of semiconductor heterostructure devices? How does quantum mechanics relate to semiconductor heterostructures? This book tries to answer questions such as these. The book provides a basis for the understanding of modern semiconductor devices that have dimensions in the nanometer range, that is, comparable to the electron de Broglie wavelength. For such small spatial dimensions, classical physics no longer gives a full description of physical processes. The inclusion of quantum mechanical principles becomes mandatory and provides a useful description of common physical processes in electronic, optoelectronic, and photonic devices. Chapters 1 to 11 teach the quantum‐mechanical principles, including the postulates of quantum mechanics, operators, the uncertainty principle, the Schrödinger equation, non‐periodic and periodic potentials, quantum wells, and perturbation theory. Chapters 12 to 20 apply these principles to semiconductor devices and discuss the density of states, semiconductor statistics, carrier concentrations, doping, tunneling, and aspects of heterostructure devices. The 2022 edition is a complete revision of the 2015 edition and also updates the formatting to make it easily viewable with electronic display devices.
Novel heterostructure devices. Electron-phonon interactions in intersubband laser heterostructures / M.V. Kisin, M. Dutta, and M.A. Stroscio -- Quantum dot infrared detectors and sources / P. Bhattacharya ... [et al.] -- Generation of terahertz emission based on intersubband transitions / Q. Hu -- Mid-infrared GaSb-based lasers with Type-I heterointerfaces / D.V. Donetsky, R.U. Martinelli, and G.L. Belenky -- Advances in quantum-dot research and technology: the path to applications in biology / M.A. Stroscio and M. Dutta -- Potential device applications and basic properties. High-field electron transport controlled by optical phonon emission in nitrides / S.M. Komirenko ... [et al.] -- Cooling by inverse Nottingham effect with resonant tunneling / Y. Yu, R.F. Greene, and R. Tsu -- The physics of single electron transistors / M.A. Kastner -- Carrier capture and transport within tunnel injection lasers: a quantum transport analysis / L.F. Register ... [et al.] -- The influence of environmental effects on the acoustic phonon spectra in quantum-dot heterostructures / S. Rufo, M. Dutta, and M.A. Stroscio -- Quantum devices with multipole-electrode - heterojunctions hybrid structures / R. Tsu.
The composition of modern semiconductor heterostructures can be controlled precisely on the atomic scale to create low-dimensional systems. These systems have revolutionised semiconductor physics, and their impact on technology, particularly for semiconductor lasers and ultrafast transistors, is widespread and burgeoning. This book provides an introduction to the general principles that underlie low-dimensional semiconductors. As far as possible, simple physical explanations are used, with reference to examples from actual devices. The author shows how, beginning with fundamental results from quantum mechanics and solid-state physics, a formalism can be developed that describes the properties of low-dimensional semiconductor systems. Among numerous examples, two key systems are studied in detail: the two-dimensional electron gas, employed in field-effect transistors, and the quantum well, whose optical properties find application in lasers and other opto-electronic devices. The book includes many exercises and will be invaluable to undergraduate and first-year graduate physics or electrical engineering students taking courses in low-dimensional systems or heterostructure device physics.
It is widely recognized that an understanding of the optical pro perties of matter will give a great deal of important information re levant to the fundamental physical properties. This is especially true in semiconductor physics for which, due to the intrinsic low screening of these materials, the optical response is quite rich. Their spectra reflect indeed as well electronic as spin or phonon transitions. This is also in the semiconductor field that artificial structures have been recently developed, showing for the first time specific physical properties related to the low dimentionality of the electronic and vi bronic properties : with this respect the quantum and fractional quan tum Hall effects are among the most well known aspects. The associated reduced screening is also a clear manifestation of these aspects and as such favors new optical properties or at least significantly enhan ces some of them. For all these reasons, it appeared necessary to try to review in a global way what the optical investigation has brought today about the understanding of the physics of semiconductors. This volume collects the papers presented at the NATO Advanced study Inst i tut e on "Optical Properties of Semiconductors" held at the Ettore Majorana Centre, Erice, Sicily on March 9th to 20th, 1992. This school brought together 70 scientists active in research related to optical properties of semiconductors. There were 12 lecturers who pro vided the main contributions .