Download Free Wave Dynamics Mechanics And Physics Of Microstructured Metamaterials Book in PDF and EPUB Free Download. You can read online Wave Dynamics Mechanics And Physics Of Microstructured Metamaterials and write the review.

This book addresses theoretical and experimental methods for exploring microstructured metamaterials, with a special focus on wave dynamics, mechanics, and related physical properties. The authors use various mathematical and physical approaches to examine the mechanical properties inherent to particular types of metamaterials. These include: • Boundary value problems in reduced strain gradient elasticity for composite fiber-reinforced metamaterials • Self-organization of molecules in ferroelectric thin films • Combined models for surface layers of nanostructures • Computer simulation at the micro- and nanoscale • Surface effects with anisotropic properties and imperfect temperature contacts • Inhomogeneous anisotropic metamaterials with uncoupled and coupled surfaces or interfaces • Special interface finite elements and other numerical and analytical methods for composite structures
This volume deals with topical problems concerning technology and design in construction of modern metamaterials. The authors construct the models of mechanical, electromechanical and acoustical behavior of the metamaterials, which are founded upon mechanisms existing on micro-level in interaction of elementary structures of the material. The empiric observations on the phenomenological level are used to test the created models. The book provides solutions, based on fundamental methods and models using the theory of wave propagation, nonlinear theories and composite mechanics for media with micro- and nanostructure. They include the models containing arrays of cracks, defects, with presence of micro- and nanosize piezoelectric elements and coupled physical-mechanical fields of different nature. The investigations show that the analytical, numerical and experimental methods permit evaluation of the qualitative and quantitative properties of the materials of this sort, with diagnosis of their effective characteristics, frequency intervals of effective energetic cutting and passing, as well as effective regimes of damage evaluation by the acoustic methods.
This book features selected manuscripts presented at ICoNSoM 2019, exploring cutting-edge methods for developing novel models in nonlinear solid mechanics. Innovative methods like additive manufacturing—for example, 3D printing— and miniaturization mean that engineers need more accurate techniques for modeling solid body mechanics. The book focuses on the formulation of continuum and discrete models for complex materials and systems, particularly the design of metamaterials.
This book presents a selection of cutting-edge methods that allow readers to obtain novel models for nonlinear solid mechanics. Today, engineers need more accurate techniques for modeling solid body mechanics, chiefly due to innovative methods like additive manufacturing—for example, 3D printing—but also due to miniaturization. This book focuses on the formulation of continuum and discrete models for complex materials and systems, and especially the design of metamaterials. It gathers outstanding papers from the international conference IcONSOM 2019
In this book, well-known scientists discuss modern aspects of generalized continua, in order to better understand modern materials and advanced structures. They possess complicated internal structure, and it requires the development of new approaches to model such structures and new effects caused by it. This book combines fundamental contributions in honor of Victor Eremeyev and his 60th birthday.
This book presents fundamental theoretical and experimental studies of well-known scientists in solid mechanics, hydromechanics, aeromechanics, biomechanics, etc. These studies relate to contact and mixed problems of the theory of elasticity and viscoelasticity, tribology, fracture mechanics, electroelasticity, magnetoelasticity, as well as to the theory of anisotropic shells and plates and are aimed at application in various areas of engineering practice. The book is devoted to the 110th birthday of academician N.Kh. Arutunyan.
This book deals concisely and coherently with various issues related to electroacoustic waves in piezoelectric layered composites.Starting with the basic linear equations and relations of electromagnet elasticity of homogeneous anisotropic piezoelectric media, the book considers the conditions for possible field or partial conjugation of physical and mechanical fields at the junction of two homogeneous media with geometrically homogeneous surfaces. The variety of electromechanical boundary conditions and the separation of plane and anti-plane fields of elastic deformation in homogeneous piezoelectric crystals are discussed.Then, the statements of the electroacoustic problem in piezo textures are studied and a layered piecewise-homogeneous piezoelectric waveguide is introduced, with non-acoustic contact between different piezoelectric layers.Non-acoustic contact between different piezoelectric layers can lead to the propagation of a hybrid of electroactive waves of plane and anti-plane elastic deformations.In the last part of the book, the problem of controlling electroacoustic waves in a waveguide is formulated. A method for solving problems of control of electroacoustic waves by non-contact surface action is proposed.
This book presents a range of research projects focusing on innovative numerical and modeling strategies for the nonlinear analysis of structures and metamaterials. The topics covered concern various analysis approaches based on classical finite element solutions, structural optimization, and analytical solutions in order to present a comprehensive overview of the latest scientific advances. Although based on pioneering research, the contributions are focused on immediate and direct application in practice, providing valuable tools for researchers and practicing professionals alike.
This book is devoted to the study of topical issues of the simultaneous interaction of various types of stress concentrators with massive homogeneous and composite deformable bodies. A wide class of new contact and mixed problems is considered, and their closed or effective solutions are constructed. The features of the dynamic mutual influence of various stress concentrators in some problems of forced vibrations of composite massive bodies are also studied.