Download Free Water Wave Mechanics For Engineers And Scientists Book in PDF and EPUB Free Download. You can read online Water Wave Mechanics For Engineers And Scientists and write the review.

This book is intended as an introduction to classical water wave theory for the college senior or first year graduate student. The material is self-contained; almost all mathematical and engineering concepts are presented or derived in the text, thus making the book accessible to practicing engineers as well.The book commences with a review of fluid mechanics and basic vector concepts. The formulation and solution of the governing boundary value problem for small amplitude waves are developed and the kinematic and pressure fields for short and long waves are explored. The transformation of waves due to variations in depth and their interactions with structures are derived. Wavemaker theories and the statistics of ocean waves are reviewed. The application of the water particle motions and pressure fields are applied to the calculation of wave forces on small and large objects. Extension of the linear theory results to several nonlinear wave properties is presented. Each chapter concludes with a set of homework problems exercising and sometimes extending the material presented in the chapter. An appendix provides a description of nine experiments which can be performed, with little additional equipment, in most wave tank facilities.
An introduction to classical water wave theory for college seniors or first-year graduate students. Almost all the necessary mathematical and engineering concepts are either presented or derived in the text, making it also useful as a reference for practicing engineers. Paper edition (0421-3), $28. Acidic paper. Annotation copyrighted by Book News, Inc., Portland, OR
This book is intended as an introductory textbook for graduate students and as a reference book for engineers and scientists working in the field of coastal engineering. As such it gives a description of the theories for wave and nearshore hydrodynamics. It is meant to de-mystify the topics and hence starts at a fairly basic level. It requires knowledge of fluid mechanics equivalent to a first year graduate level. At the end of each topic, an attempt is made to give an overview of the present stage of the scientific development in that area with numerous references for further studies.
This book focuses on: (1) the physics of the fundamental dynamics of fluids and of semi-immersed Lagrangian solid bodies that are responding to wave-induced loads; (2) the scaling of dimensional equations and boundary value problems in order to determine a small dimensionless parameter ε that may be applied to linearize the equations and the boundary value problems so as to obtain a linear system; (3) the replacement of differential and integral calculus with algebraic equations that require only algebraic substitutions instead of differentiations and integrations; and (4) the importance of comparing numerical and analytical computations with data from laboratories and/or nature.
Accompanying CD-ROM in pocket at the back of book
Waves in Oceanic and Coastal Waters describes the observation, analysis and prediction of wind-generated waves in the open ocean, in shelf seas, and in coastal regions with islands, channels, tidal flats and inlets, estuaries, fjords and lagoons. Most of this richly illustrated book is devoted to the physical aspects of waves. After introducing observation techniques for waves, both at sea and from space, the book defines the parameters that characterise waves. Using basic statistical and physical concepts, the author discusses the prediction of waves in oceanic and coastal waters, first in terms of generalised observations, and then in terms of the more theoretical framework of the spectral energy balance. He gives the results of established theories and also the direction in which research is developing. The book ends with a description of SWAN (Simulating Waves Nearshore), the preferred computer model of the engineering community for predicting waves in coastal waters.
Random waves are the most important constituent of the sea environment. They make the design of maritime structures quite different from that of structures on land. In this book, the concept of randomness in waves for the design of breakwaters, seawalls, and harbor structures is fully explored for easy comprehension by practicing engineers. Theoretical aspects are also discussed in detail for further studies by graduate students and researchers. Several additions have been made to this second edition, including a new chapter on extreme wave statistics.
Text on coastal engineering and oceanography covering theory and applications intended to mitigate shoreline erosion.
Practicing engineers in the offshore and reservoir engineering industry will find this timely volume filled with practical advice and expert information on current oil field development from oil exploration to production.
If you need a book that relates the core principles of quantum mechanics to modern applications in engineering, physics, and nanotechnology, this is it. Students will appreciate the book's applied emphasis, which illustrates theoretical concepts with examples of nanostructured materials, optics, and semiconductor devices. The many worked examples and more than 160 homework problems help students to problem solve and to practise applications of theory. Without assuming a prior knowledge of high-level physics or classical mechanics, the text introduces Schrödinger's equation, operators, and approximation methods. Systems, including the hydrogen atom and crystalline materials, are analyzed in detail. More advanced subjects, such as density matrices, quantum optics, and quantum information, are also covered. Practical applications and algorithms for the computational analysis of simple structures make this an ideal introduction to quantum mechanics for students of engineering, physics, nanotechnology, and other disciplines. Additional resources available from www.cambridge.org/9780521897839.