Download Free Water Use In Agriculture Book in PDF and EPUB Free Download. You can read online Water Use In Agriculture and write the review.

In December 2002, a group of specialists on water resources from the United States and Iran met in Tunis, Tunisia, for an interacademy workshop on water resources management, conservation, and recycling. This was the fourth interacademy workshop on a variety of topics held in 2002, the first year of such workshops. Tunis was selected as the location for the workshop because the Tunisian experience in addressing water conservation issues was of interest to the participants from both the United States and Iran. This report includes the agenda for the workshop, all of the papers that were presented, and the list of site visits.
First title in a major new seriesAddresses improving water productivity to relieve problems of scarcity and competition to provide for food and environmental securityDraws from scientists having a multitude of disciplines to approach this important problemIn a large number of developing countries, policy makers and researchers are increasingly aware of the conflicting demands on water, and look at agriculture to be more effective in its use of water. Focusing on both irrigated and rain-fed agriculture, this book gives a state of the art review of the limits and opportunities for improving water productivity in crop production. It demonstrates how efficiency of water use can be enhanced to maximize yields. The book represents the first in a new series of volumes resulting from the Comprehensive Assessment of Water Management in Agriculture, a research program conducted by the CGIAR's Future Harvest Centres, the Food and Agriculture Organization of the United Nations and partners worldwide. It will be of significant interest to those working in areas of soil and crop science, water management, irrigation, and development studies.
For nearly a century, scientific advances have fueled progress in U.S. agriculture to enable American producers to deliver safe and abundant food domestically and provide a trade surplus in bulk and high-value agricultural commodities and foods. Today, the U.S. food and agricultural enterprise faces formidable challenges that will test its long-term sustainability, competitiveness, and resilience. On its current path, future productivity in the U.S. agricultural system is likely to come with trade-offs. The success of agriculture is tied to natural systems, and these systems are showing signs of stress, even more so with the change in climate. More than a third of the food produced is unconsumed, an unacceptable loss of food and nutrients at a time of heightened global food demand. Increased food animal production to meet greater demand will generate more greenhouse gas emissions and excess animal waste. The U.S. food supply is generally secure, but is not immune to the costly and deadly shocks of continuing outbreaks of food-borne illness or to the constant threat of pests and pathogens to crops, livestock, and poultry. U.S. farmers and producers are at the front lines and will need more tools to manage the pressures they face. Science Breakthroughs to Advance Food and Agricultural Research by 2030 identifies innovative, emerging scientific advances for making the U.S. food and agricultural system more efficient, resilient, and sustainable. This report explores the availability of relatively new scientific developments across all disciplines that could accelerate progress toward these goals. It identifies the most promising scientific breakthroughs that could have the greatest positive impact on food and agriculture, and that are possible to achieve in the next decade (by 2030).
This book offers a broad and global level description of the current status of wastewater use in agriculture and then brings the readers to various places in the MENA Region and Europe to explain how some countries and regions have addressed the challenges during implementation. On a global scale, over 20 million hectares of agricultural land are irrigated using wastewater. This is one good, and perhaps the most prominent, example of the safe use potential of wastewater. Water scarcity and the cost of energy and fertilisers are among the main factors driving millions of farmers and other entrepreneurs to make use of wastewater. In order to address the technical, institutional, and policy challenges of safe water reuse, developing countries and countries in transition need clear institutional arrangements and more skilled human resources, with a sound understanding of the opportunities and potential risks of wastewater use. Stakeholders in wastewater irrigation who need to implement from scratch or improve current conditions, find it difficult to gather the necessary information on practical implementation aspects. The main objective of this book is to bridge that gap.
This book investigates the current and future state of freshwater and the global drive to achieve the UN sustainability goal. It first explores the major barriers to achieving the goal and then examines some of the programs water managers are adopting to overcome those barriers. These programs include finding new ways to supplement existing water supplies, and greater acceptance of alternative supplies, such as recycled waste water and desalination; green infrastructures, and rain and storm water harvesting. It concludes with two chapters on water management tools, including asset management and strategic planning, which are of particular interest to small water and wastewater utilities.
As the world population increases, there is increasing competition for waterquantity as well as quality. Provided here is an up-to-date perspective on Available Water Resources (Part I), Water Conservation and Technology inAgricultural Systems (Part II), Problem Water Uses and Treatment (Part III),and Management and Policy Evaluation (Part IV). The book is an invaluable source of information for water resource planners, managers and policy makers, researchers and students, and irrigationists.
Richtlijnen voor de werker in het veld om problemen te ondervangen ten aanzien van de waterkwaliteit voor irrigatie-doeleinden. Tenslotte worden praktijkervaringen uit diverse gebieden vermeld
Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies and Challenges for Woody Crops explores the complex relationship between water scarcity and climate change, agricultural water-use efficiency, crop-water stress management and modeling water scarcity in woody crops. Understanding these cause- and effect relationships and identifying the most appropriate responses are critical for sustainable crop production. The book focuses on Mediterranean environments to explain how to determine the most appropriate strategy and implement an effective plan; however, core concepts are translational to other regions. Informative for those working in agricultural water management, irrigation and drainage, crop physiology and sustainable agriculture. Focuses on semi-arid crops including olive, vine, citrus, almonds, peach, nectarine, plum, subtropical fruits and others Explores crop physiological responses to drought at plant, cellular and/or molecular levels Presents tool options for assessing crop-water status and irrigation scheduling
This report contains a collection of papers from a workshopâ€"Strengthening Science-Based Decision-Making for Sustainable Management of Scarce Water Resources for Agricultural Production, held in Tunisia. Participants, including scientists, decision makers, representatives of non-profit organizations, and a farmer, came from the United States and several countries in North Africa and the Middle East. The papers examined constraints to agricultural production as it relates to water scarcity; focusing on 1) the state of the science regarding water management for agricultural purposes in the Middle East and North Africa 2) how science can be applied to better manage existing water supplies to optimize the domestic production of food and fiber. The cross-cutting themes of the workshop were the elements or principles of science-based decision making, the role of the scientific community in ensuring that science is an integral part of the decision making process, and ways to improve communications between scientists and decision makers.