Download Free Water Relations Of Plants Book in PDF and EPUB Free Download. You can read online Water Relations Of Plants and write the review.

Water Relations of Plants attempts to explain the importance of water through a description of the factors that control the plant water balance and how they affect the physiological processes that determine the quantity and quality of growth. Organized into 13 chapters, this book first discusses the functions and properties of water and the plant cell water relations. Subsequent chapters focus on measurement and control of soil water, as well as growth and functions of root. This book also looks into the water absorption, the ascent of sap, the transpiration, and the water stress and its effects on plant processes and growth. This book will be useful for students, teachers, and investigators in both basic and applied plant science, as well as for botanists, agronomists, foresters, horticulturists, soil scientists, and even laymen with an interest in plant water relations.
Principles of Soil and Plant Water Relations, 2e describes the principles of water relations within soils, followed by the uptake of water and its subsequent movement throughout and from the plant body. This is presented as a progressive series of physical and biological interrelations, even though each topic is treated in detail on its own. The book also describes equipment used to measure water in the soil-plant-atmosphere system. At the end of each chapter is a biography of a scientist whose principles are discussed in the chapter. In addition to new information on the concept of celestial time, this new edition also includes new chapters on methods to determine sap flow in plants dual-probe heat-pulse technique to monitor water in the root zone. - Provides the necessary understanding to address advancing problems in water availability for meeting ecological requirements at local, regional and global scales - Covers plant anatomy: an essential component to understanding soil and plant water relations
Water Relations of Plants and Soils, successor to the seminal 1983 book by Paul Kramer, covers the entire field of water relations using current concepts and consistent terminology. Emphasis is on the interdependence of processes, including rate of water absorption, rate of transpiration, resistance to water flow into roots, soil factors affecting water availability. New trends in the field, such as the consideration of roots (rather than leaves) as the primary sensors of water stress, are examined in detail. Addresses the role of water in the whole range of plant activities Describes molecular mechanisms of water action in the context of whole plants Synthesizes recent scientific findings Relates current concepts to agriculture and ecology Provides a summary of methods
Box 9E. 1 Continued FIGURE 2. The C–S–R triangle model (Grime 1979). The strategies at the three corners are C, competiti- winning species; S, stress-tolerating s- cies; R,ruderalspecies. Particular species can engage in any mixture of these three primary strategies, and the m- ture is described by their position within the triangle. comment briefly on some other dimensions that Grime’s (1977) triangle (Fig. 2) (see also Sects. 6. 1 are not yet so well understood. and 6. 3 of Chapter 7 on growth and allocation) is a two-dimensional scheme. A C—S axis (Com- tition-winning species to Stress-tolerating spe- Leaf Economics Spectrum cies) reflects adaptation to favorable vs. unfavorable sites for plant growth, and an R- Five traits that are coordinated across species are axis (Ruderal species) reflects adaptation to leaf mass per area (LMA), leaf life-span, leaf N disturbance. concentration, and potential photosynthesis and dark respiration on a mass basis. In the five-trait Trait-Dimensions space,79%ofallvariation worldwideliesalonga single main axis (Fig. 33 of Chapter 2A on photo- A recent trend in plant strategy thinking has synthesis; Wright et al. 2004). Species with low been trait-dimensions, that is, spectra of varia- LMA tend to have short leaf life-spans, high leaf tion with respect to measurable traits. Compared nutrient concentrations, and high potential rates of mass-based photosynthesis. These species with category schemes, such as Raunkiaer’s, trait occur at the ‘‘quick-return’’ end of the leaf e- dimensions have the merit of capturing cont- nomics spectrum.
This volume will be the only existing single-authored book offering a science-based breeder’s manual directed at breeding for water-limited environments. Plant breeding is characterized by the need to integrate information from diverse disciplines towards the development and delivery of a product defines as a new cultivar. Conventional breeding draws information from disciplines such as genetics, plant physiology, plant pathology, entomology, food technology and statistics. Plant breeding for water-limited environments and the development of drought resistant crop cultivars is considered as one of the more difficult areas in plant breeding while at the same time it is becoming a very pressing issue. This volume is unique and timely in that it develops realistic solutions and protocols towards the breeding of drought resistant cultivars by integrating knowledge from environmental science, plant physiology, genetics and molecular biology.
This 33-chapter volume presents a critical examination of the importance of stable isotopes in understanding key plant metabolic processes. - Carbon isotope analyses for estimates of plant water use and metabolism - Integrated estimates of stress impacts and life history in ecological systems - Hydrogen and oxygen isotope analyses for evaluating water sources and transpiration - Use of stable isotopes in scaling from leaf to global levels - Sections include: History and Theoretical Considerations, Ecological Aspects of Carbon Isotope Variation, Agricultural Aspects of Carbon Isotope Variation, Genetics and Isotopic Variation, Water Relations and Isotopic Composition
Woody plants such as trees have a significant economic and climatic influence on global economies and ecologies. This completely revised classic book is an up-to-date synthesis of the intensive research devoted to woody plants published in the second edition, with additional important aspects from the authors' previous book, Growth Control in Woody Plants. Intended primarily as a reference for researchers, the interdisciplinary nature of the book makes it useful to a broad range of scientists and researchers from agroforesters, agronomists, and arborists to plant pathologists and soil scientists. This third edition provides crutial updates to many chapters, including: responses of plants to elevated CO2; the process and regulation of cambial growth; photoinhibition and photoprotection of photosynthesis; nitrogen metabolism and internal recycling, and more. Revised chapters focus on emerging discoveries of the patterns and processes of woody plant physiology.* The only book to provide recommendations for the use of specific management practices and experimental procedures and equipment*Updated coverage of nearly all topics of interest to woody plant physiologists* Extensive revisions of chapters relating to key processes in growth, photosynthesis, and water relations* More than 500 new references * Examples of molecular-level evidence incorporated in discussion of the role of expansion proteins in plant growth; mechanism of ATP production by coupling factor in photosynthesis; the role of cellulose synthase in cell wall construction; structure-function relationships for aquaporin proteins
Drawing on a host of scientific studies, this text explores how rising levels of CO2 in the atmosphere have impacted water in plants and soils. It discusses drought, the soil-plant-atmosphere continuum, the soil atmosphere, root growth, and variable oxygen concentration of soil. The book also covers the use of carbon isotope ratios in plant science, stomatal conductance and density, transpiration and evapotranspiration, water use efficiency, C4 photosynthesis, plant anatomy, phenology, and measures of plant growth. More than 200 high quality figures illustrate the concepts discussed.
As plant physiology increased steadily in the latter half of the 19th century, problems of absorption and transport of water and of mineral nutrients and problems of the passage of metabolites from one cell to another were investigated, especially in Germany. JUSTUS VON LIEBIG, who was born in Darmstadt in 1803, founded agricultural chemistry and developed the techniques of mineral nutrition in agricul ture during the 70 years of his life. The discovery of plasmolysis by NAGEL! (1851), the investigation of permeability problems of artificial membranes by TRAUBE (1867) and the classical work on osmosis by PFEFFER (1877) laid the foundations for our understanding of soluble substances and osmosis in cell growth and cell mechanisms. Since living membranes were responsible for controlling both water movement and the substances in solution, "permeability" became a major topic for investigation and speculation. The problems then discussed under that heading included passive permeation by diffusion, Donnan equilibrium adjustments, active transport processes and antagonism between ions. In that era, when organelle isolation by differential centrifugation was unknown and the electron microscope had not been invented, the number of cell membranes, their thickness and their composition, were matters for conjecture. The nature of cell surface membranes was deduced with remarkable accuracy from the reactions of cells to substances in solution. In 1895, OVERTON, in U. S. A. , published the hypothesis that membranes were probably lipid in nature because of the greater penetration by substances with higher fat solubility.
Vascular Transport in Plants provides an up-to-date synthesis of new research on the biology of long distance transport processes in plants. It is a valuable resource and reference for researchers and graduate level students in physiology, molecular biology, physiology, ecology, ecological physiology, development, and all applied disciplines related to agriculture, horticulture, forestry and biotechnology. The book considers long-distance transport from the perspective of molecular level processes to whole plant function, allowing readers to integrate information relating to vascular transport across multiple scales. The book is unique in presenting xylem and phloem transport processes in plants together in a comparative style that emphasizes the important interactions between these two parallel transport systems. - Includes 105 exceptional figures - Discusses xylem and phloem transport in a single volume, highlighting their interactions - Syntheses of structure, function and biology of vascular transport by leading authorities - Poses unsolved questions and stimulates future research - Provides a new conceptual framework for vascular function in plants