Download Free Water In Lithium Ion Batteries Book in PDF and EPUB Free Download. You can read online Water In Lithium Ion Batteries and write the review.

This book reviews the impact of water content in lithium-ion batteries (LIBs) as well as the reactivity of anodes, cathodes and electrolytes with water and processes that provide water-resistance to materials in LIBs. Water in LIBs which were constructed with anode, cathode and organic electrolyte containing lithium salts can degrade the cell performance and seriously damage the materials present. However, because a small amount of water in cells contributes to the formation of the solid electrolyte interphase, complete removal of water from cells lowers the battery performance and increases costs due to removal of water from the battery materials. This book presents the optimal concentration of water for each battery material along with appropriate removal methods and water-scavengers which were developed recently to establish both high performance and lower costs. Moreover this book describes the development of anodes and cathodes prepared by aqueous process and aqueous LIBs in which aqueous electrolytes containing lithium salts are used as an electrolyte. This book will be useful not only for academic researchers but also for company researchers who deal with LIBs.
This book addresses recycling technologies for many of the valuable and scarce materials from spent lithium-ion batteries. A successful transition to electric mobility will result in large volumes of these. The book discusses engineering issues in the entire process chain from disassembly over mechanical conditioning to chemical treatment. A framework for environmental and economic evaluation is presented and recommendations for researchers as well as for potential operators are derived.
Lithium-ion batteries (LIBs), as a key part of the 2019 Nobel Prize in Chemistry, have become increasingly important in recent years, owing to their potential impact on building a more sustainable future. Compared with other batteries developed, LIBs offer high energy density, high discharge power, and a long service life. These characteristics have facilitated a remarkable advance of LIBs in many frontiers, including electric vehicles, portable and flexible electronics, and stationary applications. Since the field of LIBs is advancing rapidly and attracting an increasing number of researchers, it is necessary to often provide the community with the latest updates. Therefore, this book was designed to focus on updating the electrochemical community with the latest advances and prospects on various aspects of LIBs. The materials presented in this book cover advances in several fronts of the technology, ranging from detailed fundamental studies of the electrochemical cell to investigations to better improve parameters related to battery packs.
A one-stop resource for both researchers and development engineers, this comprehensive handbook serves as a daily reference, replacing heaps of individual papers. This second edition features twenty percent more content with new chapters on battery characterization, process technology, failure mechanisms and method development, plus updated information on classic batteries as well as entirely new results on advanced approaches. The authors, from such leading institutions as the US National Labs and from companies such as Panasonic and Sanyo, present a balanced view on battery research and large-scale applications. They follow a distinctly materials-oriented route through the entire field of battery research, thus allowing readers to quickly find the information on the particular materials system relevant to their research.
The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology,?Second Edition provides a clear and concise explanation of EV and Li-ion batteries for readers that are new to the field. The second edition expands and updates all topics covered in the original book, adding more details to all existing chapters and including major updates to align with all of the rapid changes the industry has experienced over the past few years. This handbook offers a layman's explanation of the history of vehicle electrification and battery technology, describing the various terminology and acronyms and explaining how to do simple calculations that can be used in determining basic battery sizing, capacity, voltage, and energy. By the end of this book the reader will have a solid understanding of the terminology around Li-ion batteries and be able to undertake simple battery calculations. The book is immensely useful to beginning and experienced engineers alike who are moving into the battery field. Li-ion batteries are one of the most unique systems in automobiles today in that they combine multiple engineering disciplines, yet most engineering programs focus on only a single engineering field. This book provides the reader with a reference to the history, terminology and design criteria needed to understand the Li-ion battery and to successfully lay out a new battery concept. Whether you are an electrical engineer, a mechanical engineer or a chemist, this book will help you better appreciate the inter-relationships between the various battery engineering fields that are required to understand the battery as an Energy Storage System. It gives great insights for readers ranging from engineers to sales, marketing, management, leadership, investors, and government officials. - Adds a brief history of battery technology and its evolution to current technologies? - Expands and updates the chemistry to include the latest types - Discusses thermal runaway and cascading failure mitigation technologies? - Expands and updates the descriptions of the battery module and pack components and systems?? - Adds description of the manufacturing processes for cells, modules, and packs? - Introduces and discusses new topics such as battery-as-a-service, cell to pack and cell to chassis designs, and wireless BMS?
Two-Dimensional Optical Spectroscopy discusses the principles and applications of newly emerging two-dimensional vibrational and optical spectroscopy techniques. It provides a detailed account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy. It also bridges the gap between the formal developm
This comprehensive, two-volume resource provides a thorough introduction to lithium ion (Li-ion) technology. Readers get a hands-on understanding of Li-ion technology, are guided through the design and assembly of a battery, through deployment, configuration and testing. The book covers dozens of applications, with solutions for each application provided. Volume Two focuses on small batteries in consumer products and power banks, as well as large low voltage batteries in stationary or mobile house power, telecom, residential, marine and microgrid. Traction batteries, including passenger, industrial, race vehicles, public transit, marine, submarine and aircraft are also discussed. High voltage stationary batteries grid-tied and off-grid are presented, exploring their use in grid quality, arbitrage and back-up, residential, microgrid, industrial, office buildings. Finally, the book explores what happens when accidents occur, so readers may avoid these mistakes. Written by a prominent expert in the field and packed with over 500 illustrations, these volumes contain solutions to practical problems, making it useful for both the novice and experienced practitioners.
Safety of Lithium Batteries describes how best to assure safety during all phases of the life of Lithium ion batteries (production, transport, use, and disposal). About 5 billion Li-ion cells are produced each year, predominantly for use in consumer electronics. This book describes how the high-energy density and outstanding performance of Li-ion batteries will result in a large increase in the production of Li-ion cells for electric drive train vehicle (xEV) and battery energy storage (BES or EES) purposes. The high-energy density of Li battery systems comes with special hazards related to the materials employed in these systems. The manufacturers of cells and batteries have strongly reduced the hazard probability by a number of measures. However, absolute safety of the Li system is not given as multiple incidents in consumer electronics have shown. - Presents the relationship between chemical and structure material properties and cell safety - Relates cell and battery design to safety as well as system operation parameters to safety - Outlines the influences of abuses on safety and the relationship to battery testing - Explores the limitations for transport and storage of cells and batteries - Includes recycling, disposal and second use of lithium ion batteries
2D infrared (IR) spectroscopy is a cutting-edge technique, with applications in subjects as diverse as the energy sciences, biophysics and physical chemistry. This book introduces the essential concepts of 2D IR spectroscopy step-by-step to build an intuitive and in-depth understanding of the method. This unique book introduces the mathematical formalism in a simple manner, examines the design considerations for implementing the methods in the laboratory, and contains working computer code to simulate 2D IR spectra and exercises to illustrate involved concepts. Readers will learn how to accurately interpret 2D IR spectra, design their own spectrometer and invent their own pulse sequences. It is an excellent starting point for graduate students and researchers new to this exciting field. Computer codes and answers to the exercises can be downloaded from the authors' website, available at www.cambridge.org/9781107000056.