Download Free Water Balance Study Book in PDF and EPUB Free Download. You can read online Water Balance Study and write the review.

This addition to The Basics of Recharge and Discharge series deals with the surface water balance approaches that form the traditional basis of hydrological investigations. It explores both field methods and modelling methods for measuring or estimating the different parts of the water balance, including rainfall, evaporation, run-off and soil water storage. The authors discuss the concepts required to understand a surface water balance result or to set up an experiment. As water balance studies can be both time-consuming and expensive, this report will give readers a better understanding of water balance approaches and the considerations before going into a water balance study for the purpose of deep drainage.
Explores soil as a nexus for water, chemicals, and biologically coupled nutrient cycling Soil is a narrow but critically important zone on Earth's surface. It is the interface for water and carbon recycling from above and part of the cycling of sediment and rock from below. Hydrogeology, Chemical Weathering, and Soil Formation places chemical weathering and soil formation in its geological, climatological, biological and hydrological perspective. Volume highlights include: The evolution of soils over 3.25 billion years Basic processes contributing to soil formation How chemical weathering and soil formation relate to water and energy fluxes The role of pedogenesis in geomorphology Relationships between climate soils and biota Soils, aeolian deposits, and crusts as geologic dating tools Impacts of land-use change on soils The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the Editors
There is widespread recognition that water resources, including groundwater and surface water, are coming under pressure from increasing demand of water uses. Water supply systems have often been developed in an unsustainable way, threatening vital social and economic developments. As a result many governments have been reforming water resources management to adopt the approach known as Integrated Water Resources Management (IWRM). An important objective of this training manual is to address the factors that influence water storage and how water can be used in the most beneficial way based on available water budget which is the output from a water balance study. The goal of this manual is to introduce the broader framework of water management to be used by the water engineers/professionals, mangers so that they can identify the various challenges of water management and take appropriate measure to mitigate or eliminate the problems. Various tools have been introduced to estimate water budget, pros and cons of each tools were discussed. The manual also highlight the impact of climate change on water sector and various adaptive measures that can be used as potential mitigation measures. It also emphasis the issue of public participation and various stakeholders' roles for water management. Finally it explains the importance on information management for processing various hydrological data and the process of disseminating information among various stake holders.
This book presents the basic principles for evaluating water quality and treatment plant performance in a clear, innovative and didactic way, using a combined approach that involves the interpretation of monitoring data associated with (i) the basic processes that take place in water bodies and in water and wastewater treatment plants and (ii) data management and statistical calculations to allow a deep interpretation of the data. This book is problem-oriented and works from practice to theory, covering most of the information you will need, such as (a) obtaining flow data and working with the concept of loading, (b) organizing sampling programmes and measurements, (c) connecting laboratory analysis to data management, (e) using numerical and graphical methods for describing monitoring data (descriptive statistics), (f) understanding and reporting removal efficiencies, (g) recognizing symmetry and asymmetry in monitoring data (normal and log-normal distributions), (h) evaluating compliance with targets and regulatory standards for effluents and water bodies, (i) making comparisons with the monitoring data (tests of hypothesis), (j) understanding the relationship between monitoring variables (correlation and regression analysis), (k) making water and mass balances, (l) understanding the different loading rates applied to treatment units, (m) learning the principles of reaction kinetics and reactor hydraulics and (n) performing calibration and verification of models. The major concepts are illustrated by 92 fully worked-out examples, which are supported by 75 freely-downloadable Excel spreadsheets. Each chapter concludes with a checklist for your report. If you are a student, researcher or practitioner planning to use or already using treatment plant and water quality monitoring data, then this book is for you! 75 Excel spreadsheets are available to download.
Groundwater development has shown phenomenal progress in our country during past few decades. There has been a vast improvement in the perception, outlook and significance of groundwater resource. Groundwater is a dynamic system. It is dynamic in the sense that the state of any hydrological system is changing with time, and in the sense that we are continually developing new scientific techniques to evaluate these systems. The total annual replenishable groundwater resource of India is around 431 BCM. Inspite of the national scenario on the availability of groundwater being favourable, there are many areas in the country facing scarcity of water. This is because of the unplanned groundwater development resulting in fall of water levels, failure of wells, and salinity ingress in coastal areas. The development and over-exploitation of groundwater resources in certain parts of the country have raised the concern and need for judicious and scientific resource management and conservation. A complexity of factors - hydrogeological, hydrological and climatological, control the groundwater occurrence and movement. The precise assessment of recharge and discharge is rather difficult, as no techniques are currently available for their direct measurements. Hence, the methods employed for groundwater resource estimation are all indirect. Groundwater being a dynamic and replenishable resource is generally estimated based on the component of annual recharge, which could be subjected to development by means of suitable groundwater structures. Mathematical models are tools, which are frequently used in studying groundwater systems. In general, mathematical models are used to simulate (or to predict) the groundwater flow. Predictive simulations must be viewed as estimates, dependent upon the quality and uncertainty of the input data. Model conceptualization is the process in which data describing field conditions are assembled in a systematic way to describe groundwater flow processes at a site. The model conceptualization aids in determining the modelling approach and which model software to use. Taking the base from my lecture notes delivered in various training courses during last 26 years and further editing and additions, I have developed this book titled "Groundwater Assessment and Modelling". The book is intended to provide a comprehensive treatise related to assessment and modelling of groundwater. It includes chapters on assessment of groundwater potential, groundwater data requirement and analysis, basic concepts and guidelines for groundwater modelling, groundwater modelling software, modelling of unsaturated flow, modelling of sea water intrusion, and impact of climate change on groundwater resources. I hope this book will be quite useful for undergraduate and postgraduate students (water resources engineering), field engineers and researchers working in the area of assessment, development and management of groundwater resources.
Forests cover approximately 26% of the world's land surface area and represent a distinct biotic community. They interact with water and soil in a variety of ways, providing canopy surfaces which trap precipitation and allow evaporation back into the atmosphere, thus regulating how much water reaches the forest floor as through fall, as well as pull water from the soil for transpiration. The discipline "forest hydrology" has been developed throughout the 20th century. During that time human intervention in natural landscapes has increased, and land use and management practices have intensified. The book will be useful for graduate students, professionals, land managers, practitioners, and researchers with a good understanding of the basic principles of hydrology and hydrologic processes.