Download Free Waste To Renewable Biohydrogen Book in PDF and EPUB Free Download. You can read online Waste To Renewable Biohydrogen and write the review.

Waste to Renewable Biohydrogen: Volume 1: Advances in Theory and Experiments provides a comprehensive overview of the advances, processes and technologies for waste treatment to hydrogen production. It introduces and compares the most widely adopted and most promising technologies, such as dark fermentation, thermochemical and photosynthetic processes. In this part, potential estimation, feasibility analysis, feedstock pretreatment, advanced waste-to-biohydrogen processes and each individual systems element are examined. The book delves into the theoretical and experimental studies for the design and optimization of different waste-to-biohydrogen processes and systems. Covering several advanced waste-to-biohydrogen pretreatment and production processes, this book investigates the future trends and the promising pathways for biohydrogen production from waste. - Discusses the potential, feasibility, progress, challenges and prospect of waste-to-biohydrogen technologies - Explores the most promising waste-to-biohydrogen technologies including dark fermentation, thermochemical and photosynthetic processes - Investigate the mechanisms and the effects of the influential factors on different waste-to-biohydrogen processes
Waste to Renewable Biohydrogen, Volume Two: Numerical Modelling and Sustainability Assessment provides an integrated approach on the experimental, modeling and sustainability aspects of waste-to-biohydrogen systems. The book focuses on processes for waste treatment to hydrogen production, delving into modeling and simulation methodologies for the design and optimization of different processes and systems. In addition, it looks at the application of computational fluid dynamics and artificial neural networks. Finally, it addresses the economic, environmental and sustainability implications of waste-to-biohydrogen systems, covering several techniques for cost-benefit analysis, techno-economic analysis, lifecycle assessment, sustainability ranking and supply chain design. This well-rounded reference supports decision-making for energy researchers and industry practitioners alike, but it is also ideal for graduate students, early career researchers and waste management professionals. Includes numerical simulation models for environmental performances and sustainable supply chains Explores modeling methodologies for the optimization and upscaling of sustainable technologies and systems Offers global case studies and comparisons of different feedstocks
This book comprehensively introduces fundamentals and applications of fermentative hydrogen production from organic wastes, consisting of eight chapters, covering the microbiology, biochemistry and enzymology of hydrogen production, the enrichment of hydrogen-producing microorganisms, the pretreatment of various organic wastes for hydrogen production, the influence of different physicochemical factors on hydrogen production, the kinetic models and simulation of biological process of fermentative hydrogen production, the optimization of biological hydrogen production process and the fermentative hydrogen production from sewage sludge. The book summarizes the most recent advances that have been made in this field and discusses bottlenecks of further development. This book gives a holistic picture of this technology and details the knowledge through illustrative diagrams, flow charts, and comprehensive tables. It is intended for undergraduate and graduate students who are interested in bioenergy and wastes management, researchers exploring microbial fermentation process, and engineers working on system optimization or other bioenergy applications.
Biotechnology for Zero Waste The use of biotechnology to minimize waste and maximize resource valorization In Biotechnology for Zero Waste: Emerging Waste Management Techniques, accomplished environmental researchers Drs. Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari deliver a robust exploration of the role of biotechnology in reducing waste and creating a zero-waste environment. The editors provide resources covering perspectives in waste management like anaerobic co-digestion, integrated biosystems, immobilized enzymes, zero waste biorefineries, microbial fuel cell technology, membrane bioreactors, nano biomaterials, and more. Ideal for sustainability professionals, this book comprehensively sums up the state-of-the-art biotechnologies powering the latest advances in zero-waste strategies. The renowned contributors address topics like bioconversion and biotransformation and detail the concept of the circular economy. Biotechnology for Zero Waste effectively guides readers on the path to creating sustainable products from waste. The book also includes: A thorough introduction to modern perspectives on zero waste drives, including anaerobic co-digestion as a smart approach for enhancing biogas production Comprehensive explorations of bioremediation for zero waste, biological degradation systems, and bioleaching and biosorption of waste Practical discussions of bioreactors for zero waste and waste2energy with biotechnology An in-depth examination of emerging technologies, including nanobiotechnology for zero waste and the economics and commercialization of zero waste biotechnologies Perfect for process engineers, natural products, environmental, soil, and inorganic chemists, Biotechnology for Zero Waste: Emerging Waste Management Techniques will also earn a place in the libraries of food technologists, biotechnologists, agricultural scientists, and microbiologists.
Waste to Renewable Biohydrogen, Volume Two: Numerical Modelling and Sustainability Assessment provides an integrated approach on the experimental, modeling and sustainability aspects of waste-to-biohydrogen systems. The book focuses on processes for waste treatment to hydrogen production, delving into modeling and simulation methodologies for the design and optimization of different processes and systems. In addition, it looks at the application of computational fluid dynamics and artificial neural networks. Finally, it addresses the economic, environmental and sustainability implications of waste-to-biohydrogen systems, covering several techniques for cost-benefit analysis, techno-economic analysis, lifecycle assessment, sustainability ranking and supply chain design. This well-rounded reference supports decision-making for energy researchers and industry practitioners alike, but it is also ideal for graduate students, early career researchers and waste management professionals. - Includes numerical simulation models for environmental performances and sustainable supply chains - Explores modeling methodologies for the optimization and upscaling of sustainable technologies and systems - Offers global case studies and comparisons of different feedstocks
Increase in green, renewable and sustainable energy demand due to higher environmental impacts (e.g. Greenhouse gases emissions, climate change, etc.) on consumption of fossil fuel resource put down an extra pressure on government, researchers and industrialists. Among several available biofuel options, biohydrogen is considered as one of the best environmentally clean fuel and a strong candidate to fulfil the future demand of sustainable energy resource. Although, biohydrogen production technology and its use as a fuel is still in infancy stage. Selection of most sustainable production pathway, increase in production upto industrial scale and cost efficiency are some issue still persist with the biohydrogen research. “Biohydrogen Production: Sustainability of Current Technology and Future Perspective” is giving an insight for the sustainable production of biohydrogen at industrial scale. The process of biohydrogen production is complex and to opt the best suited production system for industrial scale is a frantic task. This book will provide an in depth information on all available technologies for biohydrogen production and feedstock options to choose upon. This book is also providing information on present status of the research in the field and possibility to change future fuel economy in to biohydrogen economy. Experts views provided in the chapters by renowned researchers from all over the globe in the field of biohydrogen research made this book a cornucopia of present research and future perspective of biohydrogen. This book is targeted at the researchers working on biohydrogen as well as the bioenergy scientist planning to move towards biohydrogen research. This book will provide a platform for motivation of researchers and industrialists for innovative ideas and thoughts to bring biohydrogen production at industrial scale.
BIOENERGY RESEARCH Evaluates challenges and sustainable solutions associated with various biofuel technologies Bioenergy Research offers an authoritative guide to recent developments in green bioenergy technologies that are currently available including: bioethanol, biobutanol, biomethanol, bio-oil, biohydrogen, biogas and biomethane. The authors provide in-depth analysis and discuss the commercial viability of the various technological advances in bioenergy. Comprehensive in scope, the book explores the environmental, practical and economic implications associated with a variety of bioenergy options. The book also considers the rollback of fossil fuels, the cost and their replacement as well as practical solutions for these issues. This important resource: Presents up-to-date research and industrial developments for various bioenergy options Offers comparative evaluation of bioenergy technologies for commercial feasibility Reviews current challenges and sustainable solutions for a variety of biofuel technologies Contains a review of existing strategies for bioenergy production Bioenergy Research is a valuable guide for academic researchers and industrial scientists working in the fields of biofuels and bioenergy, environmental science and technology, microbial technology, bioprocess engineering, and waste valorization.
Biorefineries are becoming increasingly important in providing sustainable routes for chemical industry processes. The establishment of bio-economic models, based on biorefineries for the creation of innovative products with high added value, such as biochemicals and bioplastics, allows the development of “green chemistry” methods in synergy with traditional chemistry. This reduces the heavy dependence on imports and assists the development of economically and environmentally sustainable production processes, that accommodate the huge investments, research and innovation efforts. This book explores the most effective or promising catalytic processes for the conversion of biobased components into high added value products, as platform chemicals and intermediates. With a focus on heterogeneous catalysis, this book is ideal for researchers working in catalysis and in green chemistry.
Biohydrogen Production: Fundamentals and Technology Advances covers the fundamentals of biohydrogen production technology, including microbiology, biochemistry, feedstock requirements, and molecular biology of the biological hydrogen production processes. It also gives insight into scale-up problems and limitations. In addition, the book discusses mathematical modeling of the various processes involved in biohydrogen production and the software required to model the processes. The book summarizes research advances that have been made in this field and discusses bottlenecks of the various processes, which presently limit the commercialization of this technology. The authors also focus on the process economy, policy, and environmental impact of this technology, since the future of biohydrogen production depends not only on research advances, but also on economic considerations (the cost of fossil fuels), social espousal, and the development of H2 energy systems. The book describes the fundamentals of this technology interwoven with more advanced research findings. Further reading is suggested at the end of each chapter. Since the beauty of any innovation is its applicability, socioeconomic impact, and cost energy analysis, the book examines each of these points to give you a holistic picture of this technology. Illustrative diagrams, flow charts, and comprehensive tables detailing the scientific advancements provide an opportunity to understand the process comprehensively and meticulously. Written in a lucid style, the book supplies a complete knowledge bank about biohydrogen production processes.
In combating global warming and other environmental issues over the use of fossil fuels, extensive research has been focusing on developing hydrogen production from biological processes. Biohydrogen is considered a promising future biofuel because of its intrinsic clean and high-energy content properties and the way it is produced. In addition to being produced through environmentally friendly biological means, its conversion to energy yields only pure water, which is an ideal energy carrier in reducing greenhouse gas emissions from fossil fuel combustion. Unlike other well-developed biofuels such as bioethanol and biodiesel, biohydrogen production is still in the early stage of development. A variety of technologies are being developed for biohydrogen production. This chapter presents a review of the state-of-the-art and perspectives of bioprocess design for biohydrogen production research in the context of pathways, microorganisms, metabolic flux analysis, process design, and reactor system. Challenges and prospects of biohydrogen production are also outlined.