Download Free Waste Biorefineries Book in PDF and EPUB Free Download. You can read online Waste Biorefineries and write the review.

Waste Biorefinery: Potential and Perspectives offers data-based information on the most cutting-edge processes for the utilisation of biogenic waste to produce biofuels, energy products, and biochemicals – a critical aspect of biorefinery. The book explores recent developments in biochemical and thermo-chemical methods of conversion and the potential generated by different kinds of biomass in more decentralized biorefineries. Additionally, the book discusses the move from 200 years of raw fossil materials to renewable resources and how this shift is accompanied by fundamental changes in industrial manufacturing technologies (from chemistry to biochemistry) and in logistics and manufacturing concepts (from petrochemical refineries to biorefineries). Waste Biorefinery: Potential and Perspectives designs concepts that enable modern biorefineries to utilize all types of biogenic wastes, and to integrate processes that convert byproduct streams to high-value products, achieving higher cost benefits. This book is an essential resource for researchers and students studying biomass, biorefineries, and biofuels/products/processes, as well as chemists, biochemical/chemical engineers, microbiologists, and biotechnologists working in industries and government agencies. - Details the most advanced and innovative methods for biomass conversion - Covers biochemical and thermo-chemical processes as well as product development - Discusses the integration of technologies to produce bio-fuels, energy products, and biochemicals - Illustrates specific applications in numerous case studies for reference and teaching purposes
Waste Biorefinery: Integrating Biorefineries for Waste Valorisation provides the various options available for several renewable waste streams. The book includes scientific and technical information pertaining to the most advanced and innovative processing technologies used for the conversion of biogenic waste to biofuels, energy products and biochemicals. In addition, the book reports on recent developments and new achievements in the field of biochemical and thermo-chemical methods and the necessities and potential generated by different kinds of biomass in presumably more decentralized biorefineries. The book presents an assortment of case-studies from developing and developed countries pertaining to the use of sustainable technologies for energy recovery from different waste matrices. Advantages and limitations of different technologies are also discussed by considering the local energy demands, government policies, environmental impacts, and education in bioenergy. - Provides information on the most advanced and innovative processes for biomass conversion - Covers information on biochemical and thermo-chemical processes and products development on the principles of biorefinery - Includes information on the integration of processes and technologies for the production of biofuels, energy products and biochemicals - Demonstrates the application of various processes with proven case studies
Waste Biorefinery: Value Addition through Resources Utilization provides scientific and technical information surrounding the most advanced and innovative processing technologies used for the conversion of biogenic waste to biofuels, energy products and biochemicals. The book covers recent developments and achievements in the field of biochemical, thermo-chemical and hybrid methods and the necessities and potentials generated by different kinds of residual streams, including biomass in presumably more decentralized biorefineries. An assortment of case-studies from developing and developed countries illustrate the topics presented, covering energy, chemicals, fuels, food for animal recovery from different waste matrices, and more. Finally, the advantages and limitations of different technologies are discussed, considering local energy demand, government policies, environmental impacts and education in bioenergy. This book will serve as an excellent resource for science graduates, chemical engineers, environmental engineers, biotechnologists and industrial experts in these areas. - Provides information on the most advanced and innovative processes for biomass conversion - Covers information on biochemical and thermochemical processes and product developments surrounding the principles of biorefining - Presents information on the integration of processes and technologies for the production of biofuels, energy products and biochemicals
Biorefineries are an essential technology in converting biomass into biofuels or other useful materials. Advances in Biorefineries provides a comprehensive overview of biorefining processing techniques and technologies, and the biofuels and other materials produced. Part one focuses on methods of optimizing the biorefining process and assessing its environmental and economic impact. It also looks at current and developing technologies for producing value-added materials. Part two goes on to explore these materials with a focus on biofuels and other value-added products. It considers the properties, limitations, and practical applications of these products and how they can be used to meet the increasing demand for renewable and sustainable fuels as an alternative to fossil fuels. Advances in Biorefineries is a vital reference for biorefinery/process engineers, industrial biochemists/chemists, biomass/waste scientists and researchers and academics in the field. - A comprehensive and systematic reference on the advanced biomass recovery and conversion processes used in biorefineries - Reviews developments in biorefining processes - Discusses the wide range of value-added products from biorefineries, from biofuel to biolubricants and bioadhesives
Waste Biorefineries: Advanced Design Concepts for Integrated Waste to Energy Processes presents a detailed guide to the design of energy-efficient and cost-effective waste-integrated biorefineries. Integrating thermochemical processing of waste with existing waste-to-energy technologies, the book includes the latest developments and technologies. It introduces current waste valorization techniques and examines reasons to modify existing waste-to-energy systems through the integration of new processes. In addition, the book explains the design of novel biorefineries and methods to assess these processes alongside detailed results, including the integration of waste-based CHP plants with waste gasification and the integration of pyrolysis technologies and biogas plants with waste thermochemical processing.Other sections discuss the issues and challenges of commercializing waste-to-energy technologies, including uncertainty in waste thermochemical process designs, the environmental impact of waste-integrated biorefineries, and the role of integrated waste-to-energy management in smart cities and urban energy systems. This book will be an invaluable reference for students, researchers and those in industry who are interested in the design and implementation of waste-to-energy systems, waste biomass-based combined heat and power plants, biogas plants and forest-based industries. - Presents advanced and novel waste conversion processes and provides the tools, data and models for waste-to-energy processes and waste biorefineries availability - Provides comprehensive uncertainty analysis of waste-to-energy designs and modelling processes - Examines the replicability potential of methods for the design of waste biorefineries for different regions and markets with different sets of products
This book is a compilation of process, technologies and value added products such as high value biochemicals and biofuels produced from different waste biorefineries. The book is sectioned into four categories providing a comprehensive outlook about zero waste biorefinery and technologies associated with it. The emerging technologies that potentially put back the lignocellulosic waste, municipal solid waste and food waste into intrinsic recycling for production of high value biochemicals and bioenergy, along with associated challenges and opportunities are also included. The content also focuses on algal biorefineries leading to sustainable circular economy through production of broad spectrum of bioactive compounds, bioethanol, biobutanol, biohydrogen, biodiesel through integrated biorefinery approach. The volume also includes chapters on conversion technologies and mathematical models applied for process optimization. A sound foundation about the underlying principles of biorefineries and a up-to-date state-of-the-art based overview on the latest advances in terms of scientific knowledge, techno-economic developments and life cycle assessment methodologies of integrated waste biorefinery is provided. This volume will be of great interest to professionals, post-graduate students and policy makers involved in waste management, biorefineries, circular economy and sustainable development.
With the growth of the world population and the production of more waste, the world needs to implement sustainable waste management to make better use of our resources. Biorefineries are an essential technology in converting biomass into useful materials. This volume provides a comprehensive overview of biorefining processing techniques, technologies, and materials that can use waste products in a number of innovative ways. It covers proven case studies that demonstrate the most advanced and innovative processes and product developments on waste biorefinery principles. This new book also provides valuable data and technologies that consider environmental impacts. This reference book is divided into three sections that provide a thoughtful outlook on technologies associated with waste biorefinery. In the first section, the reader is introduced to recent steps toward renewable and clean energy along with waste-to-energy technologies. The second section of this book is devoted to modern technologies for waste valorization that holds a valuable prospective for a sustainable green world. In the last section of the book, the authors consider the future energy, green products, and waste treatment. This volume is a practical guide for postgraduate scholars and scientists interested in waste biorefinery. Readers will also gain a broader overview on theory and application of this important field.
The utilization of various types of biomass residue to produce products such as biofuels and biochemicals means biorefinery technology using biomass residues may become a one-stop solution to the increasing need for sustainable, non-fossil sources of energy and chemicals.Refining Biomass Residues for Sustainable Energy and Bioproducts: Technology, Advances, Life Cycle Assessment and Economics focuses on the various biorefineries currently available and discusses their uses, challenges, and future developments. This book introduces the concept of integrated biorefinery systems, as well as their operation and feedstock sourcing. It explores the specificities, current developments, and potential end products of various types of residue, from industrial and municipal to agricultural and marine, as well as residue from food industries. Sustainability issues are discussed at length, including life cycle assessment, economics, and cost analysis of different biorefinery models. In addition, a number of global case studies examine successful experiences in different regions.This book is an ideal resource for researchers and practitioners in the field of bioenergy and waste management who are looking to learn about technologies involved in residue biorefinery systems, how to reduce their environmental impacts, and how to ensure their commercial viability. - Explores a range of different biorefinery categories, such as industrial, agricultural, and marine biomass residues - Includes a Life Cycle Assessment of biorefinery models, in addition to costs and market analysis. - Features case studies from around the world and is written by an international team of authors
Energy recovery from waste resources holds a significant role in the sustainable waste management hierarchy to support the concept of circular economies and to mitigate the challenges of waste originated problems of sanitation, environment, and public health. Today, waste disposal to landfills is the most widely used methodology, particularly in developing countries, because of limited budgets and lack of efficient infrastructure and facilities to maintain efficient and practical global standards. As a consequence, the dump-sites or non-sanitary landfills have become the significant sources of greenhouse gases emissions, soil and water contamination, unpleasant odors, leachate, and disease spreading vectors, flies, and rodents. However, waste can be utilized to produce a range of potential products such as energy, fuels and value-added products under waste biorefineries. A holistic and quantitative view, such as waste biorefinery, on waste management must be linked to the actual country, taking into account its socio-economic situation, local waste sources, and composition, as well as the available markets for the recovered energy and products. Therefore, it is critical to understand that solutions cannot be just copied from one region to the others. In fact, all waste handling, transportation, and treatment can represent a burden to the cities’ environment and macro and micro economics, except for the benefits obtained from recovered materials and energy. Equally significant is a clear and quantitative understanding of the industrial, and public potential of utilizing recovered materials and energy in the markets as these can be reached without exacerbating the environmental issues using excessive transport. The book explores new advancements and discoveries on the development of emerging waste-to-energy technologies, practical implementation, and lessons learned from sustainable wastemanagement practices under waste biorefinery concept, which will accelerate the growth of circular economies in the world. The articles presented in this book have been written by expert researchers and academics working in institutions at different countries across the world including Germany, Greece, Japan, South Korea, China, Saudi Arabia, Pakistan, Indonesia, Malaysia, Iran, and India. The research articles have been arranged into three main subject categories; 1) Resource recovery from waste, 2) Waste to energy technologies and 3) Waste biorefineries. This book will serve as an important resource for research students, academics, industry, policy makers, and government agencies working in the field of integrated waste management, energy and resource recovery, waste to energy technologies, waste biorefineries etc. The editorial team of this book is very grateful to all the authors for their excellent contributions and making the book successful.
The United Nations' Sustainable Development Goals (SDGs) are designed to revolutionize societies to prepare for the future challenges. However, the practical implementation of such goals in many domains is are yet to be achieved despite of unique essence. Sustainable energy production (aligned with SDG 7), clean water and sanitation (aligned with SDG 6), sustainable waste services (aligned with SDG 11), and mitigating climate change impacts (aligned with SDG 13) have been the prime focus of SDGs. Moreover, much attention is being paid to research and development activities on waste prevention, reduction, recycling, and reuse to achieve responsible consumption and production (aligned with SDG 12). Waste biorefineries have emerged as a sustainable environmental management solution to achieve not only the aforementioned SDGs, but also to accomplish no poverty (aligned with SDG 1) and zero hunger (aligned with SDG 2) and to maintain well-being and good health aligned with (SDG 3) and decent work and economic growth (aligned with SDG 8) worldwide. This is true because integrated waste biorefineries can efficiently and sustainably produce fuels, heat, energy, power, and multiple value-added products and chemicals. It can further facilitate the transition from linear to circular economies and mitigate the major challenges faced, including environmental pollution, climate change, and adverse effects on public health. This Research Topic will focus on different types of waste biorefineries, current status, practical implications, optimization of waste-to-energy technologies, detailed life assessment studies, and future opportunities with a vision to achieve SDGs in the areas of sustainable energy generation, waste management, circular economies, and climate change mitigation. The editorial team of this special issue, consisting of world-renowned scientists including Highly Cited Researchers, welcomes submissions of original research articles, review articles, short communications, industrial and/or country/region case studies that covers the following enlisted topics: • Waste biorefineries (e.g., organic waste biorefinery, agricultural and forestry waste biorefinery, etc.) • Integration of different types of biorefineries • Sustainable development goals • Waste to energy technologies • Energy and resource recovery from biomass and other waste • Renewable and sustainable energy systems • Biomass and waste supply chain • Sustainable waste management systems • Mitigation of environmental pollution and climate change • Life cycle assessment • Sustainable circular and bio-based economies.