Download Free Wassmann Methane Emissions From Pa Book in PDF and EPUB Free Download. You can read online Wassmann Methane Emissions From Pa and write the review.

Atmospheric abudance of trace gases since the pre-industrial time has forced the earth's climate to change, threatening food security. Exchange of biogenic trace gases between the atmosphere and the biosphere is directly or indirectly influenced by the plants. This volume contains the latest findings on the correlation between the climate change and biogenic gas emission, plant response to elevated levels of carbon dioxide, temperature, ozone and UV-B in combination and alone, regulatory mechanism of methane, nitrous oxide and ammonia emission and their mitigating options. Ecologists, atmospheric scientists, plant physiologists, research scholars, teachers and post-graduate students will benefit from this book.
Methane Emissions from Unique Wetlands in China: Case Studies, Meta Analyses and Modelling is a landmark volume in the development of studies about methane emission from wetlands. Although there are books about methane emissions from rice paddies, natural wetlands and reservoirs, this book is the first one that provides information about methane emission from wetlands in China. Moreover, the book picks up very unique wetlands, alpine wetlands on the eastern edge of the Qinghai-Tibetan Plateau, and Three Gorges Reservoir (the world's largest hydroelectric reservoir) as cases to study methane emissions. It reviews and meta-analyses methane emissions from rice paddies, natural wetlands and lakes in China during the past twenty years. Furthermore, this book acts as bridge to connect microbial ecology and modelling: it both describes methane-producing bacteria dynamics and methane emission modelling.
Rice production is affected by changing climate conditions and has the dual role of contributing to global warming through emissions of the greenhouse gas methane. Climate change has been recognized as a major threat to the global environment. Because of insufficient field data, rice-growing countries face a problem when trying to comply with the United Nations Framework Convention on Climate Change stipulations to compile a national inventory of emissions and to explore mitigation options. Given the expected doubling in rice production in Asia, the need to evaluate the interaction between climate change and rice production is critical to forming a sound basis for future directions of technology developments by policy makers, agriculturists, environmentalists, rice producers, and rice consumers. The present book comprises two sections. The first part documents a comprehensive overview of the results achieved from an interregional research effort to quantify methane emission from major rice ecosystems and to identify efficient mitigation options. This research report broadens understanding of the contribution of rice cultivation to methane emissions and clarifies that emissions are relatively low, except in specific rice ecosystems, and that these high emissions could be ameliorated without sacrificing yield. The second section shows results from other projects that investigated the role of rice cultivators in field and laboratory approaches. The findings represent inputs for future modeling approaches in the role of rice cultivators. The expanded database generated by other projects is reflected in modeling efforts.
Agriculture is currently facing multi-faceted threats in the form of unpredictable weather variability, frequent droughts and scarcity of irrigation water, together with the degradation of soil resources and declining environmental health. These stresses result in the modification of plant physiology to impart greater resilience to changing abiotic and biotic environments, but only at the cost of declining plant productivity. In light of these facts, assessing the status of natural resource bases, and understanding the mechanisms of soil-plant-environment interactions so as to devise adaptation and mitigation approaches, represent great and imminent challenges for all of us. In this context, it is essential to understand the potential applications of modern tools, existing coping mechanisms and their integration, as this will allow us to develop suitable advanced mitigation strategies. From a broader perspective, the book deals with crop-environment interaction in the context of changing climatic conditions. To do so, it addresses four major aspects: Understanding the mechanism of carbon dynamics in the soil-plant-environment continuum; greenhouse gas fluxes in agricultural systems; and soil properties influenced by climate change and carbon sequestration processes. Mitigation and management of the photo-thermal environment to improve crop productivity; soil health under variable climate; reducing agro-ecosystem evapotranspiration losses through biophysical controls; and heat stress in field crops and its management. Studying the impact of climate change on biotic environments; insect-pest interactions; manifestations of disease; and adaptation strategies for island agro-ecosystems. Innovative approaches to assess stress impacts in crops, such as crop modeling, remote sensing, spectral stress indices etc. The book presents a collection of contributions from authoritative experts in their respective fields. Offering young researchers new perspectives and future research directions, it represents a valuable guide for graduate students and academics alike.
Nearly two-thirds of the world's population live in Asia, and many countries in that region are currently undergoing very rapid industrial, agricultural and economic development. The Framework Convention on Climate Change constrains developed countries with regard to their future emissions of greenhouse gases, but recognizes the special needs of developing countries. There is growing appreciation of the ways in which developing countries in the Asian region both contribute to global changes (by altering biogeochemical pathways and cycles) and are themselves affected by those changes. This volume uses the intellectual efforts and findings of the International Geosphere-Biosphere Programme (IGBP) community to provide the first integrated analysis of the interactions between global change and Asian change, giving particular attention to China's role. The book will be of interest to readers in a wide range of academic disciplines (natural sciences and socio-economic) and for those involved in national and international policy development relevant to global change.
Methane plays many important roles in the earth's environment. It is a potent "greenhouse gas" that warms the earth; controls the oxidizing capacity of the atmosphere (OH) indirectly affecting the cycles and abundances of many atmospheric trace gases; provides water vapor to the stratosphere; scavenges chlorine atoms from the stratosphere, terminating the catalytic ozone destruction by chlorine atoms, including the chlorine released from the man-made chlorofluorocarbons; produces ozone, CO, and CO2 in the troposphere; and it is an index of life on earth and so is present in greater quantities during warm interglacial epochs and dwindles to low levels during the cold of ice ages. By all measures, methane is the second only to CO2 in causing future global warming. The book presents a comprehensive account of the current understanding of atmospheric methane, and it is an end point for summarizing more than a decade of intensive research on the global sources, sinks, concentrations, and environmental role of methane.
Methane is an important greenhouse gas that can cause global warming. The present concentrations of methane are nearly three times higher than several hundred years ago. Today, more than 60% of the atmospheric methane comes from human activities, including rice agriculture, coal mining, natural gas usage, biomass burning, and raising of cattle. Methane affects the stratospheric ozone layer and the oxidizing capacity of the atmosphere, which in turn control the concentrations of many man-made and natural gases in the atmosphere. This book brings together our knowledge of the trends and the causes behind the increased levels of methane. Based on the scientific information on the sources and sinks, and the role of methane in global warming, strategies to limit emissions can be designed as part of a program to control future global warming.