Download Free Wake Vortex Advisory System Wakevas Evaluation Of Impacts On The National Airspace System Book in PDF and EPUB Free Download. You can read online Wake Vortex Advisory System Wakevas Evaluation Of Impacts On The National Airspace System and write the review.

This report is one of a series that describes an ongoing effort in high-fidelity modeling/simulation, evaluation and analysis of the benefits and performance metrics of the Wake Vortex Advisory System (WakeVAS) Concept of Operations being developed as part of the Virtual Airspace Modeling and Simulation (VAMS) project. A previous study, determined the overall increases in runway arrival rates that could be achieved at 12 selected airports due to WakeVAS reduced aircraft spacing under Instrument Meteorological Conditions. This study builds on the previous work to evaluate the NAS wide impacts of equipping various numbers of airports with WakeVAS. A queuing network model of the National Airspace System, built by the Logistics Management Institute, Mclean, VA, for NASA (LMINET) was used to estimate the reduction in delay that could be achieved by using WakeVAS under non-visual meteorological conditions for the projected air traffic demand in 2010. The results from LMINET were used to estimate the total annual delay reduction that could be achieved and from this, an estimate of the air carrier variable operating cost saving was made.Smith, Jeremy C. and Dollyhigh, Samuel M.Langley Research CenterVORTEX ADVISORY SYSTEM; NATIONAL AIRSPACE SYSTEM; SYSTEMS ANALYSIS; SYSTEMS SIMULATION; AIRCRAFT APPROACH SPACING; INSTRUMENT FLIGHT RULES; DELAY; AIRLINE OPERATIONS; AIRPORTS...
The FAA and NASA are currently engaged in a Wake Turbulence Research Program to revise wake turbulence separation standards, procedures, and criteria to increase airport capacity while maintaining or increasing safety. The research program is divided into three phases: Phase I near term procedural enhancements; Phase II wind dependent Wake Vortex Advisory System (WakeVAS) Concepts of Operations (ConOps); and Phase III farther term ConOps based on wake prediction and sensing. The Phase III Wake VAS ConOps is one element of the Virtual Airspace Modelling and Simulation (VAMS) program blended concepts for enhancing the total system wide capacity of the National Airspace System (NAS). This report contains a VAMS Program Type 1 (stand-alone) assessment of the expected capacity benefits of Wake VAS at the 35 FAA Benchmark Airports and determines the consequent reduction in delay using the Airspace Concepts Evaluation System (ACES) Build 3.2.1 simulator.Smith, Jeremy C.Langley Research CenterAIRSPACE; NATIONAL AIRSPACE SYSTEM; TURBULENCE; VORTEX ADVISORY SYSTEM; WAKES; ATMOSPHERIC SOUNDING; DETECTION; SAFETY; SATELLITE SOUNDING; SIMULATORS
Without major changes, the current air transportation system will be unable to accommodate the expected increase in demand by 2025. One proposal to address this problem is to use the Global Positioning System to enable aircraft to fly more closely spaced. This approach, however, might be limited by the wake turbulence problem, which can be a safety hazard when smaller aircraft follow relatively larger aircraft too closely. To examine how this potential hazard might be reduced, Congress in 2005 directed NASA to request a study from the NRC to assess the federal wake turbulence R&D program. This book provides a description of the problem, an assessment of the organizational challenges to addressing wake turbulence, an analysis of the technical challenges in wake turbulence, and a proposal for a wake turbulence program plan. A series of recommendations for addressing the wake turbulence challenge are also given.
NASA Langley Research Center has a long history of aircraft wake vortex research, with the most recent accomplishment of demonstrating the Aircraft VOrtex Spacing System (AVOSS) at Dallas/Forth Worth International Airport in July 2000. The AVOSS was a concept for an integration of technologies applied to providing dynamic wake-safe reduced spacing for single runway arrivals, as compared to current separation standards applied during instrument approaches. AVOSS included state-of-the-art weather sensors, wake sensors, and a wake behavior prediction algorithm. Using real-time data AVOSS averaged a 6% potential throughput increase over current standards. This report describes a Concept of Operations for applying the technologies demonstrated in the AVOSS to a variety of terminal operations to mitigate wake vortex capacity constraints. A discussion of the technological issues and open research questions that must be addressed to design a Wake Vortex Advisory System (WakeVAS) is included.Rutishauser, David and Lohr, Gary and Hamilton, David and Powers, Robert and McKissick, Burnell and Adams, Catherine and Norris, EdwardLangley Research CenterAIRCRAFT WAKES; VORTEX ADVISORY SYSTEM; VORTICES; NASA PROGRAMS; AIRCRAFT APPROACH SPACING; AIR TRAFFIC CONTROL; ARRIVALS
After the completion of the National Research Council (NRC) report, Maintaining U.S. Leadership in Aeronautics: Scenario-Based Strategic Planning for NASA's Aeronautics Enterprise (1997), the National Aeronautics and Space Administration (NASA) Office of Aeronautics and Space Transportation Technology requested that the NRC remain involved in its strategic planning process by conducting a study to identify a short list of revolutionary or breakthrough technologies that could be critical to the 20 to 25 year future of aeronautics and space transportation. These technologies were to address the areas of need and opportunity identified in the above mentioned NRC report, which have been characterized by NASA's 10 goals (see Box ES-1) in "Aeronautics & Space Transportation Technology: Three Pillars for Success" (NASA, 1997). The present study would also examine the 10 goals to determine if they are likely to be achievable, either through evolutionary steps in technology or through the identification and application of breakthrough ideas, concepts, and technologies.