Download Free Wafer Fabrication Factory Performance And Analysis Book in PDF and EPUB Free Download. You can read online Wafer Fabrication Factory Performance And Analysis and write the review.

This book is concerned with wafer fabrication and the factories that manufacture microprocessors and other integrated circuits. With the invention of the transistor in 1947, the world as we knew it changed. The transistor led to the microprocessor, and the microprocessor, the guts of the modern computer, has created an epoch of virtually unlimited information processing. The electronics and computer revolution has brought about, for better or worse, a new way of life. This revolution could not have occurred without wafer fabrication, and its associated processing technologies. A microprocessor is fabricated via a lengthy, highly-complex sequence of chemical processes. The success of modern chip manufacturing is a miracle of technology and a tribute to the hundreds of engineers who have contributed to its development. This book will delineate the magnitude of the accomplishment, and present methods to analyze and predict the performance of the factories that make the chips. The set of topics covered juxtaposes several disciplines of engineering. A primary subject is the chemical engineering aspects of the electronics industry, an industry typically thought to be strictly an electrical engineer's playground. The book also delves into issues of manufacturing, operations performance, economics, and the dynamics of material movement, topics often considered the domain of industrial engineering and operations research. Hopefully, we have provided in this work a comprehensive treatment of both the technology and the factories of wafer fabrication. Novel features of these factories include long process flows and a dominance of processing over operational issues.
This book is concerned with wafer fabrication and the factories that manufacture microprocessors and other integrated circuits. With the invention of the transistor in 1947, the world as we knew it changed. The transistor led to the microprocessor, and the microprocessor, the guts of the modern computer, has created an epoch of virtually unlimited information processing. The electronics and computer revolution has brought about, for better or worse, a new way of life. This revolution could not have occurred without wafer fabrication, and its associated processing technologies. A microprocessor is fabricated via a lengthy, highly-complex sequence of chemical processes. The success of modern chip manufacturing is a miracle of technology and a tribute to the hundreds of engineers who have contributed to its development. This book will delineate the magnitude of the accomplishment, and present methods to analyze and predict the performance of the factories that make the chips. The set of topics covered juxtaposes several disciplines of engineering. A primary subject is the chemical engineering aspects of the electronics industry, an industry typically thought to be strictly an electrical engineer's playground. The book also delves into issues of manufacturing, operations performance, economics, and the dynamics of material movement, topics often considered the domain of industrial engineering and operations research. Hopefully, we have provided in this work a comprehensive treatment of both the technology and the factories of wafer fabrication. Novel features of these factories include long process flows and a dominance of processing over operational issues.
This book systematically introduces modeling, performance evaluation and applications of Automatic Materiel Handling System (AMHS) in semiconductor manufactucing, and focuses discussion on the coordination of two subsystems. Resources dispatch and optimization are conducted on operational research combined with cases studies. Written in a practical way, it is an essential reference for researchers and engineers in manufacturing and management.
Over the last fifty-plus years, the increased complexity and speed of integrated circuits have radically changed our world. Today, semiconductor manufacturing is perhaps the most important segment of the global manufacturing sector. As the semiconductor industry has become more competitive, improving planning and control has become a key factor for business success. This book is devoted to production planning and control problems in semiconductor wafer fabrication facilities. It is the first book that takes a comprehensive look at the role of modeling, analysis, and related information systems for such manufacturing systems. The book provides an operations research- and computer science-based introduction into this important field of semiconductor manufacturing-related research.
Collection of selected, peer reviewed papers from the ICMEP 2013 International Conference on Manufacturing Engineering and Process, April 13-14, 2013, Vancouver, Canada. The 373 papers are grouped as follows: Chapter 1: Advanced Materials Engineering and Technology; Chapter 2: General Mechanical Engineering; Chapter 3: Design Technology and Engineering; Chapter 4: Applied Thermodynamics, Heat Transfer, Energy Conversion; Chapter 5: Electrical Engineering and Electric Machines; Chapter 6: Power System and Energy Engineering: Its Applications; Chapter 7: Instrumentation, Measurement Technologies, Analysis and Methodology; Chapter 8: Electronics and Integrated Circuits, Embedded Technology and Applications; Chapter 9: Mechatronics and Robotics; Chapter 10: Modern Control, Automation and Reverse Engineering; Chapter 11: New Technology, Method and Technique in Civil Engineering; Chapter 12: Manufacturing and Industrial Engineering, Management Applications; Chapter 13: Mathematics - in Particular, Calculus, Differential Equations, Statistics, and Linear Algebra; Chapter 14: Signal Processing and Data Mining; Chapter 15: Information Technologies and Networks: Its Applications.
The essays and lectures collected in this book center around knowledge transfer from the complex-system sciences to applications in business, industry and society, as viewed from a broad perspective. The contributions aim to raise awareness across the spectrum to meet the increasing need to integrate lessons from complexity research into everyday planning, decision making, logistics or optimization procedures and forecasting. The writing has been largely kept non-technical.
The financial results of any manufacturing company can be dramatically impacted by the repetitive decisions required to control a complex production network be it a network of machines in a factory; a network of factories in a company; or a network of companies in a supply chain. Decision Policies for Production Networks presents recent convergent research on developing policies for operating production networks including details of practical control and decision techniques which can be applied to improve the effectiveness and economic efficiency of production networks worldwide. Researchers and practitioners come together to explore a wide variety of approaches to a range of topics including: WIP and equipment management policies, Material release policies, Machine, factory, and supply chain network policies for delivery in the face of supply and demand variability, and Conflicts between complex production network models and their controlling policies. Case studies and relevant mathematical techniques are included to support and explain techniques such as heuristics, global and hierarchical optimization, control theory and filtering approaches related to complex systems or traffic flows. Decision Policies for Production Networks acts as handbook for researchers and practitioners alike, providing findings and information which can be applied to develop methods and advance further research across production networks.
A practical guide to semiconductor manufacturing from processcontrol to yield modeling and experimental design Fundamentals of Semiconductor Manufacturing and Process Controlcovers all issues involved in manufacturing microelectronic devicesand circuits, including fabrication sequences, process control,experimental design, process modeling, yield modeling, and CIM/CAMsystems. Readers are introduced to both the theory and practice ofall basic manufacturing concepts. Following an overview of manufacturing and technology, the textexplores process monitoring methods, including those that focus onproduct wafers and those that focus on the equipment used toproduce wafers. Next, the text sets forth some fundamentals ofstatistics and yield modeling, which set the foundation for adetailed discussion of how statistical process control is used toanalyze quality and improve yields. The discussion of statistical experimental design offers readers apowerful approach for systematically varying controllable processconditions and determining their impact on output parameters thatmeasure quality. The authors introduce process modeling concepts,including several advanced process control topics such asrun-by-run, supervisory control, and process and equipmentdiagnosis. Critical coverage includes the following: * Combines process control and semiconductor manufacturing * Unique treatment of system and software technology and managementof overall manufacturing systems * Chapters include case studies, sample problems, and suggestedexercises * Instructor support includes electronic copies of the figures andan instructor's manual Graduate-level students and industrial practitioners will benefitfrom the detailed exami?nation of how electronic materials andsupplies are converted into finished integrated circuits andelectronic products in a high-volume manufacturingenvironment. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment. An Instructor Support FTP site is also available.
This book concentrates on real-world production scheduling in factories and industrial settings. It includes industry case studies that use innovative techniques as well as academic research results that can be used to improve production scheduling. Its purpose is to present scheduling principles, advanced tools, and examples of innovative scheduling systems to persons who could use this information to improve their own production scheduling.
The purpose of this book is to illustrate the magnificence of the fabless semiconductor ecosystem, and to give credit where credit is due. We trace the history of the semiconductor industry from both a technical and business perspective. We argue that the development of the fabless business model was a key enabler of the growth in semiconductors since the mid-1980s. Because business models, as much as the technology, are what keep us thrilled with new gadgets year after year, we focus on the evolution of the electronics business. We also invited key players in the industry to contribute chapters. These "In Their Own Words" chapters allow the heavyweights of the industry to tell their corporate history for themselves, focusing on the industry developments (both in technology and business models) that made them successful, and how they in turn drive the further evolution of the semiconductor industry.