Download Free Vortical Flows Book in PDF and EPUB Free Download. You can read online Vortical Flows and write the review.

This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.
Every scientific subject probably conceals unexplored or little investigated strata, which may show up at the proper time when favourable conditions coincide (practical demands, a circle of scientists prepared to recognize the novelty and capable of giving impetus to the development of a new theory, etc.). Something like this occurred in early seventies for magnetohydrodynamics, which at the time was considered to be a relatively complete branch of hydro dynamics with no apparent broad, unexplored areas. It was unexpectedly realized that, in addition to the traditional methods of affecting an electrically conducting medium, there is yet another way, one which subsequently lead to a new direction in magnetohydrodynamics. In the Soviet scientific literature this direction has been termed 'electrically induced vortex flows', the essence of which are hydrodynamic effects due to the interaction of an electric current passing through the fluid with its own magnetic field. It cannot be said that this direction was created ex nihilo: individual studies related to the flows driven in a current-carrying medium in the absence of external magnetic fields appeared in the sixties; in the thirties the flows them selves were known to take place within electrical arcs; and yet the first observa tions on the behaviour of liquid current-carrying conductors were made at the beginning of this century.
Every scientific subject probably conceals unexplored or little investigated strata, which may show up at the proper time when favourable conditions coincide (practical demands, a circle of scientists prepared to recognize the novelty and capable of giving impetus to the development of a new theory, etc.). Something like this occurred in early seventies for magnetohydrodynamics, which at the time was considered to be a relatively complete branch of hydro dynamics with no apparent broad, unexplored areas. It was unexpectedly realized that, in addition to the traditional methods of affecting an electrically conducting medium, there is yet another way, one which subsequently lead to a new direction in magnetohydrodynamics. In the Soviet scientific literature this direction has been termed 'electrically induced vortex flows', the essence of which are hydrodynamic effects due to the interaction of an electric current passing through the fluid with its own magnetic field. It cannot be said that this direction was created ex nihilo: individual studies related to the flows driven in a current-carrying medium in the absence of external magnetic fields appeared in the sixties; in the thirties the flows them selves were known to take place within electrical arcs; and yet the first observa tions on the behaviour of liquid current-carrying conductors were made at the beginning of this century.
This work is part of a cooperative research, development, test and evaluation program that brings scientists and engineers from various English-speaking countries together for collaborative studies to improve technology to solve technical problems. The current TTCP work project WTP-2 KTA 2-12, 'Application of CFD to the prediction of Missile Body Vortices' focuses on the ability of the three-dimensional Navier-Stokes equations to predict flowfields about high length-to-diameter bodies at moderate angles of attack (8 deg
Off-body flow visualizations and fluid velocity measurements are conducted in a supersonic vortex flow. Three-dimensional laser velocimetry measurements are made in the leeward flowfield over a simple sharp-edged delta wing with 75 degree sweep angle. Tests are conducted at Mach 1.9 and Reynolds number of 2.4 x 10(exp 6) based on model root chord. Measurements are made at 40% and 80% chord positions for 20 and 30 degree angles of attack and at 40% chord for 35 degrees. Mean velocities and turbulence intensities are measured on the five planes. Measurement accuracy is discussed in detail. The measurements define the location of the vortex core and provide the flowfield velocities surrounding the vortex. The difficulties inherent with seeding high velocity vortex flows are discussed ... Laser Velocimetry Measurement of Vortical Flowfields.
This monograph provides in-depth analyses of vortex dominated flows via matched and multiscale asymptotics, and demonstrates how insight gained through these analyses can be exploited in the construction of robust, efficient, and accurate numerical techniques. The book explores the dynamics of slender vortex filaments in detail, including fundamental derivations, compressible core structure, weakly non-linear limit regimes, and associated numerical methods. Similarly, the volume covers asymptotic analysis and computational techniques for weakly compressible flows involving vortex-generated sound and thermoacoustics. The book is addressed to both graduate students and researchers.
Threee-dimensional transonic flow over a delta wing is investigated with a focus on the effect of transition and influence of turbulence stress anisotropies. The performance of linear eddy viscosity models and an explicit algebraic stress model is assessed at the start of the vortex flow, and the results compared with experimental data. To assess the effect of transition location, computations that either fix transition or are fully turbulent are performed. To assess the effect of the turbulent stress ansiotropy, comparisons are made between predictions from the algebraic stress model and the linear eddy viscosity models. Both transition location and turbulent stress anisotropy significantly affect the 3D flow field. The most significant effect is found to be the modeling of transition location. At a Mach number of 0.90, the computed solution changes character from steady to unsteady depending on transition onset. Accounting for the anisotropies in the turbulent stresses also considerably impacts the flow, most notably in the outboard region of flow separation.
This is a comprehensive account of the asymptotic theory of slender vortices with diffusion cores. Addressed to both graduate students and researchers it describes the mathematical model and its numerical analysis. The asymptotic analysis involves two length and two time scales. Consistency conditions and time invariance of moments of vorticity are given and applied to numerical solutions. The authors also describe consistency conditions between the large circumferential and axial velocity in the core.