Download Free Voltage Gated Calcium Channels Book in PDF and EPUB Free Download. You can read online Voltage Gated Calcium Channels and write the review.

Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.
This book provides the reader with background information on neurotransmitter release. Emphasis is placed on the rationale by which proteins are assigned specific functions rather than just providing facts about function.
Jasper's Basic Mechanisms, Fourth Edition, is the newest most ambitious and now clinically relevant publishing project to build on the four-decade legacy of the Jasper's series. In keeping with the original goal of searching for "a better understanding of the epilepsies and rational methods of prevention and treatment.", the book represents an encyclopedic compendium neurobiological mechanisms of seizures, epileptogenesis, epilepsy genetics and comordid conditions. Of practical importance to the clinician, and new to this edition are disease mechanisms of genetic epilepsies and therapeutic approaches, ranging from novel antiepileptic drug targets to cell and gene therapies.
This book describes the newest discoveries on calcium signaling happening at the cellular and intracellular membranes, often exerted in so called microdomains. Calcium entry and release, its interaction with proteins and resulting events on proteins and organelles are comprehensively depicted by leading experts in the field. Knowledge about details of these highly dynamic processes rapidly increased in recent years, the book therefore provides a timely summary on the processes of calcium signaling and related membrane dynamics; it is aimed at students and researchers in biochemistry and cell biology.
Ion channels are proteins that make pores in the membranes of excitable cells present both in the brain and the body. These cells are not only responsible for converting chemical and mechanical stimuli into the electrical signals but are also liable for monitoring vital functions. All our activities, from the blinking of our eyes to the beating of our heart and all our senses from smell to sight, touch, taste and hearing are regulated by the ion channels. This book will take us on an expedition describing the role of ion channels in congenital and acquired diseases and the challenges and limitations scientist are facing in the development of drugs targeting these membrane proteins.
Calcium Entry Channels in Non-Excitable Cells focuses on methods of investigating the structure and function of non-voltage gated calcium channels. Each chapter presents important discoveries in calcium entry pathways, specifically dealing with the molecular identification of store-operated calcium channels which were reviewed by earlier volumes in the Methods in Signal Transduction series. Crystallographic and pharmacological approaches to the study of calcium channels of epithelial cells are also discussed. Calcium ion is a messenger in most cell types. Whereas voltage gated calcium channels have been studied extensively, the non-voltage gated calcium entry channel genes have only been identified relatively recently. The book will fill this important niche.
A number of techniques to study ion channels have been developed since the electrical basis of excitability was first discovered. Ion channel biophysicists have at their disposal a rich and ever-growing array of instruments and reagents to explore the biophysical and structural basis of sodium channel behavior. Armed with these tools, researchers have made increasingly dramatic discoveries about sodium channels, culminating most recently in crystal structures of voltage-gated sodium channels from bacteria. These structures, along with those from other channels, give unprecedented insight into the structural basis of sodium channel function. This volume of the Handbook of Experimental Pharmacology will explore sodium channels from the perspectives of their biophysical behavior, their structure, the drugs and toxins with which they are known to interact, acquired and inherited diseases that affect sodium channels and the techniques with which their biophysical and structural properties are studied.
New Therapeutics for Traumatic Brain Injury: Prevention of Secondary Brain Damage and Enhancement of Repair and Regeneration explores traumatic brain injury (TBI), a major cause of death and disability throughout the world. The delayed nature of the secondary injury phase suggests that there is a therapeutic window for pharmacological interventions or other approaches to prevent progressive tissue damage and improve functional outcomes. It is now apparent that therapeutic interventions should entail both protective and repair/regeneration strategies depending on the phase of brain injury. This book describes emerging experimental strategies for the treatment of TBI, including new anti-inflammatory or anti-apoptotic therapeutics that limit brain damage, and novel or repurposed drugs that enhance repair or regeneration of the brain after injury. - Comprehensive overview of basic approaches and translational development of new therapies for TBI - Edited by a prominent TBI researcher that includes contributions by leading global researchers in the field - Presents a great resource for researchers and practitioners to learn more about the many evolving preclinical studies and clinical trials currently underway, and the challenges of bringing translational studies in TBI to the clinic
Edited by the most prominent person in the field and top researchers at US pharmaceutical companies, this is a unique resource for drug developers and physiologists seeking a molecular-level understanding of ion channel pharmacology. After an introduction to the topic, the authors evaluate the structure and function of ion channels, as well as related drug interaction. A section on assay technologies is followed by a section each on calcium, sodium and potassium channels. Further chapters cover genetic and acquired channelopathies, before the book closes with a look at safety issues in ion channel drug development. For medicinal and pharmaceutical chemists, biochemists, molecular biologists and those working in the pharmaceutical industry.