Download Free Volcanism And Tectonism Across The Inner Solar System Book in PDF and EPUB Free Download. You can read online Volcanism And Tectonism Across The Inner Solar System and write the review.

Volcanism and tectonism are the dominant endogenic means by which planetary surfaces change. This book aims to encompass the broad range in character of volcanism, tectonism, faulting and associated interactions observed on planetary bodies across the inner solar system - a region that includes Mercury, Venus, Earth, the Moon, Mars and asteroids. The diversity and breadth of landforms produced by volcanic and tectonic processes is enormous, and varies across the inner solar system bodies. As a result, the selection of prevailing landforms and their underlying formational processes that are described and highlighted in this volume are but a primer to the expansive field of planetary volcanism and tectonism. This Special Publication features 22 research articles about volcanic and tectonic processes manifest across the inner solar system.
Planetary Volcanism across the Solar System compares and contrasts the vast array of planetary bodies in the Solar System, including Earth. The wealth of spacecraft data for almost all major solid-surface bodies in the Solar System indicate that volcanism has been a dominant mechanism in shaping the landscapes of these bodies. The book addresses key questions surrounding our understanding of planetary volcanism, such as how to integrate the data into a coherent view of how volcanic activity arises, how this mechanism shapes planets, which volcanic landforms are ubiquitous throughout the Solar System, and which are unique. By placing a singular emphasis on comparing volcanic processes and landforms on all relevant Solar System bodies, and with the explicit objective of providing a systems-level understanding of this widespread phenomenon, users will find an up-to-date, accessible and comprehensive discussion of the major volcanic processes and landforms that shape and drive the evolution of planets, moons and smaller bodies. - Includes an introduction placing the book in the context of the larger Comparative Planetology series - Compares volcanic processes and landforms on all relevant Solar System bodies, providing a systems-level understanding of this widespread phenomenon - Offers a thorough examination of the major volcanic processes and landforms that shape and drive the evolution of planets, moons and smaller bodies - Includes information from new mission data and discoveries in recent years - Features over 100 color illustrations and charts to more clearly convey concepts - Offers additional online content, including figures, animations, video, and other multimedia content such as interviews with contributing authors
This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are: Methods and tools Processes and Sources Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exobiology, early life, extreme environments and planetary resources, all areas where major advancements are expected in the forthcoming decades and both key to human exploration of the Solar System. The target readership includes advanced undergraduate students in geoscience-related topics with no specific planetary science knowledge; undergraduates in other natural science domains (e.g. physics, astronomy, biology or chemistry); graduates in engineering and space systems design who want to complement their knowledge in planetary science. The authors’ backgrounds span a broad range of topics and disciplines: rooted in Earth geoscience, their expertise covers remote sensing and cartography, field mapping, impact cratering, volcanology and tectonics, sedimentology and stratigraphy exobiology and life in extreme environments, planetary resources and mining. Several generations of planetary scientists are cooperating to provide a modern view on a discipline developed from Earth during and through Space exploration.
Much has happened in the world in the 17 years since the first New Views of the Moon was published as volume 60 of the Mineralogical Society of America in 2006. An exciting new era of lunar exploration has begun, including the promise of resuming human lunar exploration, exploring the lunar Poles, and missions to many other high-priority science targets. It is fitting, therefore, to now summarize the current state of knowledge to the degree possible at a time when advancements in knowledge of the Moon are proceeding at a breakneck pace. Therefore, during this period of unprecedented lunar exploration activity, and as we continue to rebound from a global pandemic, we now happily announce this New Views of the Moon 2 volume summarizing the advances in lunar science and exploration since 2006. The Steering Committee is eternally grateful to all contributors and especially the chapter leads, and to Professor Makiko Ohtake (University of Aizu, Japan) and Dr. David Blewett (Johns Hopkins University Applied Physics Laboratory, U.S.A.) for organizing the New Views of the Moon 2 Electronic Annex. We deeply appreciate the hard work and dedication of everyone involved in the production of this volume, especially Rachel Russell and Ian Swainson at the Mineralogical Society of America. This volume helps to frame our knowledge and expectations for an exciting future of lunar science and exploration and the new discoveries to be made. Having humans return to the Moon now seems more likely than it ever has since the last humans left the Moon on 14 December 1972.
This revised and updated edition continues to provide a comprehensive introduction to the subject, exploring the world’s landforms from a broad systems perspective. It covers the basics of Earth surface forms and processes, while reflecting on the latest developments in the field. Fundamentals of Geomorphology begins with a consideration of the nature of geomorphology, including its relation to society, process and form, history, and geomorphic systems, and moves on to discuss: • Structure: structural landforms associated with plate tectonics and those associated with volcanoes, and folds, faults, and joints. • Process and form: landforms resulting from, or influenced by, the exogenic agencies of weathering, running water, flowing ice and meltwater, ground ice and frost, the wind, and the sea; landforms developed on limestone; extraterrestrial landforms; and landscape evolution, a discussion of ancient landforms. Fundamentals of Geomorphology provides a stimulating and innovative perspective on the key topics and debates within the field of geomorphology. Written in an accessible and lively manner, it includes guides to further reading, chapter summaries, and an extensive glossary of key terms. The book is also illustrated throughout with over 200 informative diagrams and attractive photographs, all in colour. It is supported by online resources for students and instructors.
The only work to date to collect data gathered during the American and Soviet missions in an accessible and complete reference of current scientific and technical information about the Moon.
Geologic Time Scale 2020 (2 volume set) contains contributions from 80+ leading scientists who present syntheses in an easy-to-understand format that includes numerous color charts, maps and photographs. In addition to detailed overviews of chronostratigraphy, evolution, geochemistry, sequence stratigraphy and planetary geology, the GTS2020 volumes have separate chapters on each geologic period with compilations of the history of divisions, the current GSSPs (global boundary stratotypes), detailed bio-geochem-sequence correlation charts, and derivation of the age models. The authors are on the forefront of chronostratigraphic research and initiatives surrounding the creation of an international geologic time scale. The included charts display the most up-to-date, international standard as ratified by the International Commission on Stratigraphy and the International Union of Geological Sciences. As the framework for deciphering the history of our planet Earth, this book is essential for practicing Earth Scientists and academics. - Completely updated geologic time scale - Provides the most detailed integrated geologic time scale available that compiles and synthesize information in one reference - Gives insights on the construction, strengths and limitations of the geological time scale that greatly enhances its function and its utility
Plate tectonics is a revolutionary theory on a par with modern genetics. Yet, apart from the frequent use of clichés such as 'tectonic shift' by economists, journalists, and politicians, the science itself is rarely mentioned and poorly understood. This book explains modern plate tectonics in a non-technical manner, showing not only how it accounts for phenomena such as great earthquakes, tsunamis, and volcanic eruptions, but also how it controls conditions at the Earth's surface, including global geography and climate. The book presents the advances that have been made since the establishment of plate tectonics in the 1960s, highlighting, on the 50th anniversary of the theory, the contributions of a small number of scientists who have never been widely recognized for their discoveries. Beginning with the publication of a short article in Nature by Vine and Matthews, the book traces the development of plate tectonics through two generations of the theory. First generation plate tectonics covers the exciting scientific revolution of the 1960s and 1970s, its heroes and its villains. The second generation includes the rapid expansions in sonar, satellite, and seismic technologies during the 1980s and 1990s that provided a truly global view of the plates and their motions, and an appreciation of the role of the plates within the Earth 'system'. The final chapter bring us to the cutting edge of the science, and the latest results from studies using technologies such as seismic tomography and high-pressure mineral physics to probe the deep interior. Ultimately, the book leads to the startling conclusion that, without plate tectonics, the Earth would be as lifeless as Venus.
Over the past decade, asteroids have come to the forefront of planetary science. Scientists across broad disciplines are increasingly recognizing that understanding asteroids is essential to discerning the basic processes of planetary formation, including how their current distribution bespeaks our solar system’s cataclysmic past. For explorers, the nearest asteroids beckon as the most accessible milestones in interplanetary space, offering spaceflight destinations easier to reach than the lunar surface. For futurists, the prospects of asteroids as commercial resources tantalize as a twenty-first-century gold rush, albeit with far greater challenges than faced by nineteenth-century pioneers. For humanity, it is the realization that asteroids matter. It is not a question of if—but when—the next major impact will occur. While the disaster probabilities are thankfully small, fully cataloging and characterizing the potentially hazardous asteroid population remains unfinished business. Asteroids IV sets the latest scientific foundation upon which all these topics and more will be built upon for the future. Nearly 150 international authorities through more than 40 chapters convey the definitive state of the field by detailing our current astronomical, compositional, geological, and geophysical knowledge of asteroids, as well as their unique physical processes and interrelationships with comets and meteorites. Most importantly, this volume outlines the outstanding questions that will focus and drive researchers and students of all ages toward new advances in the coming decade and beyond.