Download Free Visualizing Science Book in PDF and EPUB Free Download. You can read online Visualizing Science and write the review.

This book addresses key issues concerning visualization in the teaching and learning of science at any level in educational systems. It is the first book specifically on visualization in science education. The book draws on the insights from cognitive psychology, science, and education, by experts from five countries. It unites these with the practice of science education, particularly the ever-increasing use of computer-managed modelling packages.
This book presents a methodology for visualizing large scientific domains. Authors Moya-Anegón and Vargas-Queseda create science maps, so-called "scientograms", based on the interactions between authors and their papers through citations and co-citations, using approaches such as domain analysis, social networks, cluster analysis and pathfinder networks. The resulting scientograms offer manifold possibilities.
This introductory text presents basic principles of social science research through maps, graphs, and diagrams. The authors show how concept maps and mind maps can be used in quantitative, qualitative, and mixed methods research, using student-friendly examples and classroom-based activities. Integrating theory and practice, chapters show how to use these tools to plan research projects, "see" analysis strategies, and assist in the development and writing of research reports.
Science maps that can help us understand and navigate the immense amount of results generated by today's science and technology. Cartographic maps have guided our explorations for centuries, allowing us to navigate the world. Science maps have the potential to guide our search for knowledge in the same way, allowing us to visualize scientific results. Science maps help us navigate, understand, and communicate the dynamic and changing structure of science and technology—help us make sense of the avalanche of data generated by scientific research today. Atlas of Science, featuring more than thirty full-page science maps, fifty data charts, a timeline of science-mapping milestones, and 500 color images, serves as a sumptuous visual index to the evolution of modern science and as an introduction to “the science of science”—charting the trajectory from scientific concept to published results. Atlas of Science, based on the popular exhibit, “Places & Spaces: Mapping Science”, describes and displays successful mapping techniques. The heart of the book is a visual feast: Claudius Ptolemy's Cosmographia World Map from 1482; a guide to a PhD thesis that resembles a subway map; “the structure of science” as revealed in a map of citation relationships in papers published in 2002; a visual periodic table; a history flow visualization of the Wikipedia article on abortion; a globe showing the worldwide distribution of patents; a forecast of earthquake risk; hands-on science maps for kids; and many more. Each entry includes the story behind the map and biographies of its makers. Not even the most brilliant minds can keep up with today's deluge of scientific results. Science maps show us the landscape of what we know.
External representations (pictures, diagrams, graphs, concrete models) have always been valuable tools for the science teacher. This book brings together the insights of practicing scientists, science education researchers, computer specialists, and cognitive scientists, to produce a coherent overview. It links presentations about cognitive theory, its implications for science curriculum design, and for learning and teaching in classrooms and laboratories.
How we see and how we visualize: why the scientific account differs from our experience.
Visualizing Earth Science relies heavily on rich visuals to expand on concepts for students and solidify their understanding of them. This accessible format, coupled with the assumption that students have little knowledge of earth science, allows students to navigate through the material with greater ease the goal being to help them understand the world around them and interpret what they see in a meaningful, accurate and exciting way. Authors Zeeya Merali and Brian Skinner focus on visual learning in their debut of their first edition, Visualizing Earth Science. This text weaves illustrated timelines throughout to exemplify how concepts fit together and develop over time. Students will quickly learn difficult concepts with this innovative, visual approach.
An accessible primer on how to create effective graphics from data This book provides students and researchers a hands-on introduction to the principles and practice of data visualization. It explains what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way. Data Visualization builds the reader’s expertise in ggplot2, a versatile visualization library for the R programming language. Through a series of worked examples, this accessible primer then demonstrates how to create plots piece by piece, beginning with summaries of single variables and moving on to more complex graphics. Topics include plotting continuous and categorical variables; layering information on graphics; producing effective “small multiple” plots; grouping, summarizing, and transforming data for plotting; creating maps; working with the output of statistical models; and refining plots to make them more comprehensible. Effective graphics are essential to communicating ideas and a great way to better understand data. This book provides the practical skills students and practitioners need to visualize quantitative data and get the most out of their research findings. Provides hands-on instruction using R and ggplot2 Shows how the “tidyverse” of data analysis tools makes working with R easier and more consistent Includes a library of data sets, code, and functions
A single species of fly, Drosophila melanogaster, has been the subject of scientific research for more than one hundred years. Why does this tiny insect merit such intense scrutiny? Drosophila’s importance as a research organism began with its short life cycle, ability to reproduce in large numbers, and easy-to-see mutant phenotypes. Over time, laboratory investigation revealed surprising similarities between flies and other animals at the level of genes, gene networks, cell interactions, physiology, immunity, and behavior. Like humans, flies learn and remember, fight microbial infection, and slow down as they age. Scientists use Drosophila to investigate complex biological activities in a simple but intact living system. Fly research provides answers to some of the most challenging questions in biology and biomedicine, including how cells transmit signals and form ordered structures, how we can interpret the wealth of human genome data now available, and how we can develop effective treatments for cancer, diabetes, and neurodegenerative diseases. Written by a leader in the Drosophila research community, First in Fly celebrates key insights uncovered by investigators using this model organism. Stephanie Elizabeth Mohr draws on these “first in fly” findings to introduce fundamental biological concepts gained over the last century and explore how research in the common fruit fly has expanded our understanding of human health and disease.