Download Free Visual Saliency Computation Book in PDF and EPUB Free Download. You can read online Visual Saliency Computation and write the review.

This book covers fundamental principles and computational approaches relevant to visual saliency computation. As an interdisciplinary problem, visual saliency computation is introduced in this book from an innovative perspective that combines both neurobiology and machine learning. The book is also well-structured to address a wide range of readers, from specialists in the field to general readers interested in computer science and cognitive psychology. With this book, a reader can start from the very basic question of "what is visual saliency?" and progressively explore the problems in detecting salient locations, extracting salient objects, learning prior knowledge, evaluating performance, and using saliency in real-world applications. It is highly expected that this book will spark a great interest of research in the related communities in years to come.
This book provides an introduction to recent advances in theory, algorithms and application of Boolean map distance for image processing. Applications include modeling what humans find salient or prominent in an image, and then using this for guiding smart image cropping, selective image filtering, image segmentation, image matting, etc. In this book, the authors present methods for both traditional and emerging saliency computation tasks, ranging from classical low-level tasks like pixel-level saliency detection to object-level tasks such as subitizing and salient object detection. For low-level tasks, the authors focus on pixel-level image processing approaches based on efficient distance transform. For object-level tasks, the authors propose data-driven methods using deep convolutional neural networks. The book includes both empirical and theoretical studies, together with implementation details of the proposed methods. Below are the key features for different types of readers. For computer vision and image processing practitioners: Efficient algorithms based on image distance transforms for two pixel-level saliency tasks; Promising deep learning techniques for two novel object-level saliency tasks; Deep neural network model pre-training with synthetic data; Thorough deep model analysis including useful visualization techniques and generalization tests; Fully reproducible with code, models and datasets available. For researchers interested in the intersection between digital topological theories and computer vision problems: Summary of theoretic findings and analysis of Boolean map distance; Theoretic algorithmic analysis; Applications in salient object detection and eye fixation prediction. Students majoring in image processing, machine learning and computer vision: This book provides up-to-date supplementary reading material for course topics like connectivity based image processing, deep learning for image processing; Some easy-to-implement algorithms for course projects with data provided (as links in the book); Hands-on programming exercises in digital topology and deep learning.
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
This book constitutes the thoroughly refereed post-conference proceedings of the 6th Pacific Rim Symposium on Image and Video Technology, PSIVT 2013, held in Guanajuato, México in October/November 2013. The total of 43 revised papers was carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on image/video processing and analysis, image/video retrieval and scene understanding, applications of image and video technology, biomedical image processing and analysis, biometrics and image forensics, computational photography and arts, computer and robot vision, pattern recognition and video surveillance.
This book introduces readers to innovative bio-inspired computing techniques for image processing applications. It demonstrates how a significant drawback of image processing – not providing the simultaneous benefits of high accuracy and less complexity – can be overcome, proposing bio-inspired methodologies to help do so. Besides computing techniques, the book also sheds light on the various application areas related to image processing, and weighs the pros and cons of specific methodologies. Even though several such methodologies are available, most of them do not provide the simultaneous benefits of high accuracy and less complexity, which explains their low usage in connection with practical imaging applications, such as the medical scenario. Lastly, the book illustrates the methodologies in detail, making it suitable for newcomers to the field and advanced researchers alike.
The five-volume set LNCS 7971-7975 constitutes the refereed proceedings of the 13th International Conference on Computational Science and Its Applications, ICCSA 2013, held in Ho Chi Minh City, Vietnam, in June 2013. Apart from the general track, ICCSA 2013 also include 33 special sessions and workshops, in various areas of computational sciences, ranging from computational science technologies, to specific areas of computational sciences, such as computer graphics and virtual reality. There are 46 papers from the general track, and 202 in special sessions and workshops.
The seven-volume set comprising LNCS volumes 7572-7578 constitutes the refereed proceedings of the 12th European Conference on Computer Vision, ECCV 2012, held in Florence, Italy, in October 2012. The 408 revised papers presented were carefully reviewed and selected from 1437 submissions. The papers are organized in topical sections on geometry, 2D and 3D shapes, 3D reconstruction, visual recognition and classification, visual features and image matching, visual monitoring: action and activities, models, optimisation, learning, visual tracking and image registration, photometry: lighting and colour, and image segmentation.
The last few years have witnessed fast development on dictionary learning approaches for a set of visual computing tasks, largely due to their utilization in developing new techniques based on sparse representation. Compared with conventional techniques employing manually defined dictionaries, such as Fourier Transform and Wavelet Transform, dictionary learning aims at obtaining a dictionary adaptively from the data so as to support optimal sparse representation of the data. In contrast to conventional clustering algorithms like K-means, where a data point is associated with only one cluster center, in a dictionary-based representation, a data point can be associated with a small set of dictionary atoms. Thus, dictionary learning provides a more flexible representation of data and may have the potential to capture more relevant features from the original feature space of the data. One of the early algorithms for dictionary learning is K-SVD. In recent years, many variations/extensions of K-SVD and other new algorithms have been proposed, with some aiming at adding discriminative capability to the dictionary, and some attempting to model the relationship of multiple dictionaries. One prominent application of dictionary learning is in the general field of visual computing, where long-standing challenges have seen promising new solutions based on sparse representation with learned dictionaries. With a timely review of recent advances of dictionary learning in visual computing, covering the most recent literature with an emphasis on papers after 2008, this book provides a systematic presentation of the general methodologies, specific algorithms, and examples of applications for those who wish to have a quick start on this subject.
The two volume-set, LNCS 7930 and LNCS 7931, constitutes the refereed proceedings of the 5th International Work-Conference on the Interplay between Natural and Artificial Computation, IWINAC 2013, held in Mallorca, Spain, in June 2013. The 92 revised full papers presented in LNCS 7930 and LNCS 7931 were carefully reviewed and selected from numerous submissions. The first part, LNCS 7930, entitled "Natural and Artificial Models in Computation and Biology”, includes all the contributions mainly related to the methodological, conceptual, formal, and experimental developments in the fields of neurophysiology and cognitive science. The second part, LNCS 7931, entitled “Natural and Artificial Computation in Engineering and Medical Applications”, contains the papers related to bioinspired programming strategies and all the contributions related to the computational solutions to engineering problems in different application domains, specially Health applications, including the CYTED “Artificial and Natural Computation for Health” (CANS) research network papers. In addition, this two volume-set reflects six interesting areas: cognitive robotics; natural computing; wetware computation; quality of life technologies; biomedical and industrial perception applications; and Web intelligence and neuroscience.