Download Free Vision Images Signals And Neural Networks Models Of Neural Processing In Visual Perception Book in PDF and EPUB Free Download. You can read online Vision Images Signals And Neural Networks Models Of Neural Processing In Visual Perception and write the review.

At the fascinating frontiers of neurobiology, mathematics and psychophysics, this book addresses the problem of human and computer vision on the basis of cognitive modeling. After recalling the physics of light and its transformation through media and optics, Hérault presents the principles of the primate's visual system in terms of anatomy and functionality. Then, the neuronal circuitry of the retina is analyzed in terms of spatio-temporal filtering. This basic model is extended to the concept of neuromorphic circuits for motion processing and to the processing of color in the retina. For more in-depth studies, the adaptive non-linear properties of the photoreceptors and of ganglion cells are addressed, exhibiting all the power of the retinal pre-processing of images as a system of information cleaning suitable for further cortical processing. As a target of retinal information, the primary visual area is presented as a bank of filters able to extract valuable descriptors of images, suitable for categorization and recognition and also for local information extraction such as saliency and perspective. All along the book, many comparisons between the models and human perception are discussed as well as detailed applications to computer vision./a
One of the most remarkable things about seeing is how effortless this complex task appears to be. This book provides a comprehensive overview of research on the myriad complexities of this task. Coverage includes such classic topics as color, spatial, and binocular vision, areas that have seen a recent explosion of new information such as motion vision, image formation and sampling, and areas where new tools have allowed a better investigation into processes (e.g. neural representation of shape, visual attention).Seeing is a needed reference for researchers specializing in visual perception and is suitable for advance courses on vision.
As the state-of-the-art imaging technologies became more and more advanced, yielding scientific data at unprecedented detail and volume, the need to process and interpret all the data has made image processing and computer vision increasingly important. Sources of data that have to be routinely dealt with today's applications include video transmission, wireless communication, automatic fingerprint processing, massive databanks, non-weary and accurate automatic airport screening, robust night vision, just to name a few. Multidisciplinary inputs from other disciplines such as physics, computational neuroscience, cognitive science, mathematics, and biology will have a fundamental impact in the progress of imaging and vision sciences. One of the advantages of the study of biological organisms is to devise very different type of computational paradigms by implementing a neural network with a high degree of local connectivity. This is a comprehensive and rigorous reference in the area of biologically motivated vision sensors. The study of biologically visual systems can be considered as a two way avenue. On the one hand, biological organisms can provide a source of inspiration for new computational efficient and robust vision models and on the other hand machine vision approaches can provide new insights for understanding biological visual systems. Along the different chapters, this book covers a wide range of topics from fundamental to more specialized topics, including visual analysis based on a computational level, hardware implementation, and the design of new more advanced vision sensors. The last two sections of the book provide an overview of a few representative applications and current state of the art of the research in this area. This makes it a valuable book for graduate, Master, PhD students and also researchers in the field.
This three-volume set LNCS 11139-11141 constitutes the refereed proceedings of the 27th International Conference on Artificial Neural Networks, ICANN 2018, held in Rhodes, Greece, in October 2018. The 139 full and 28 short papers as well as 41 full poster papers and 41 short poster papers presented in these volumes was carefully reviewed and selected from total of 360 submissions. They are related to the following thematic topics: AI and Bioinformatics, Bayesian and Echo State Networks, Brain Inspired Computing, Chaotic Complex Models, Clustering, Mining, Exploratory Analysis, Coding Architectures, Complex Firing Patterns, Convolutional Neural Networks, Deep Learning (DL), DL in Real Time Systems, DL and Big Data Analytics, DL and Big Data, DL and Forensics, DL and Cybersecurity, DL and Social Networks, Evolving Systems – Optimization, Extreme Learning Machines, From Neurons to Neuromorphism, From Sensation to Perception, From Single Neurons to Networks, Fuzzy Modeling, Hierarchical ANN, Inference and Recognition, Information and Optimization, Interacting with The Brain, Machine Learning (ML), ML for Bio Medical systems, ML and Video-Image Processing, ML and Forensics, ML and Cybersecurity, ML and Social Media, ML in Engineering, Movement and Motion Detection, Multilayer Perceptrons and Kernel Networks, Natural Language, Object and Face Recognition, Recurrent Neural Networks and Reservoir Computing, Reinforcement Learning, Reservoir Computing, Self-Organizing Maps, Spiking Dynamics/Spiking ANN, Support Vector Machines, Swarm Intelligence and Decision-Making, Text Mining, Theoretical Neural Computation, Time Series and Forecasting, Training and Learning.
A survey of probabilistic approaches to modeling and understanding brain function. Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.
An investigation of the effects of blindness and other types of visual deficit on cognitive abilities. Can a blind person see? The very idea seems paradoxical. And yet, if we conceive of "seeing" as the ability to generate internal mental representations that may contain visual details, the idea of blind vision becomes a concept subject to investigation. In this book, Zaira Cattaneo and Tomaso Vecchi examine the effects of blindness and other types of visual deficit on the development and functioning of the human cognitive system. Drawing on behavioral and neurophysiological data, Cattaneo and Vecchi analyze research on mental imagery, spatial cognition, and compensatory mechanisms at the sensorial, cognitive, and cortical levels in individuals with complete or profound visual impairment. They find that our brain does not need our eyes to "see." Cattaneo and Vecchi address critical questions of broad importance: the relationship of visual perception to imagery and working memory and the extent to which mental imagery depends on normal vision; the functional and neural relationships between vision and the other senses; the specific aspects of the visual experience that are crucial to cognitive development or specific cognitive mechanisms; and the extraordinary plasticity of the brain—as illustrated by the way that, in the blind, the visual cortex may be reorganized to support other perceptual or cognitive funtions. In the absence of vision, the other senses work as functional substitutes and are often improved. With Blind Vision, Cattaneo and Vecchi take on the "tyranny of the visual," pointing to the importance of the other senses in cognition.
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."
Vision science has grown hugely in the past decades, but there have been few books showing readers how to adopt a computional approach to understanding visual perception, along with the underlying mechanisms in the brain. This book explains the computational principles and models of biological visual processing, and in particular, primate vision.
This is the story of a hugely successful and enjoyable 25-year collaboration between two scientists who set out to learn how the brain deals with the signals it receives from the two eyes. Their work opened up a new area of brain research that led to their receiving the Nobel Prize in 1981. The book contains their major papers from 1959 to 1981, each preceded and followed by comments telling how and why the authors went about the study, how the work was received, and what has happened since. It begins with short autobiographies of both men, and describes the state of the field when they started. It is intended not only for neurobiologists, but for anyone interested in how the brain works-biologists, psychologists, philosophers, physicists, historians of science, and students at all levels from high school to graduate level.