Download Free Vision Based Threat Detection In Dynamic Environments Book in PDF and EPUB Free Download. You can read online Vision Based Threat Detection In Dynamic Environments and write the review.

"This report addresses the development of automated video-screening technology to assist security forces in protecting our homeland against terrorist threats. A prevailing threat is the covert placement of bombs inside crowded public facilities. Although videosurveillance systems are increasingly common, current systems cannot detect the placement of bombs. It is also unlikely that security personnel could detect a bomb or its placement by observing video from surveillance cameras. The problems lie in the large number of cameras required to monitor large areas, the limited number of security personnel employed to protect these areas, and the intense diligence required to effectively screen live video from even a single camera. Different from existing video-detection systems designed to operate in nearly static environments, we are developing technology to detect changes in the background of dynamic environments: environments where motion and human activities are persistent over long periods. Our goal is to quickly detect background changes, even if the background is visible to the camera less than 5 percent of the time and possibly never free from foreground activity."--p. 3.
In the past few years, with the advances in microelectronics and digital te- nology, cameras became a widespread media. This, along with the enduring increase in computing power boosted the development of computer vision s- tems. The International Conference on Computer Vision Systems (ICVS) covers the advances in this area. This is to say that ICVS is not and should not be yet another computer vision conference. The ?eld of computer vision is fully covered by many well-established and famous conferences and ICVS di?ers from these by covering the systems point of view. ICVS 2008 was the 6th International Conference dedicated to advanced research on computer vision systems. The conference, continuing a series of successful events in Las Palmas, Vancouver, Graz, New York and Bielefeld, in 2008 was held on Santorini. In all, 128 papers entered the review process and each was reviewed by three independent reviewers using the double-blind review method. Of these, 53 - pers were accepted (23 as oral and 30 as poster presentation). There were also two invited talks by P. Anandan and by Heinrich H. Bultho ̈ ?. The presented papers cover all aspects of computer vision systems, namely: cognitive vision, monitor and surveillance, computer vision architectures, calibration and reg- tration, object recognition and tracking, learning, human—machine interaction and cross-modal systems.
The two volume set LNCS 5506 and LNCS 5507 constitutes the thoroughly refereed post-conference proceedings of the 15th International Conference on Neural Information Processing, ICONIP 2008, held in Auckland, New Zealand, in November 2008. The 260 revised full papers presented were carefully reviewed and selected from numerous ordinary paper submissions and 15 special organized sessions. 116 papers are published in the first volume and 112 in the second volume. The contributions deal with topics in the areas of data mining methods for cybersecurity, computational models and their applications to machine learning and pattern recognition, lifelong incremental learning for intelligent systems, application of intelligent methods in ecological informatics, pattern recognition from real-world information by svm and other sophisticated techniques, dynamics of neural networks, recent advances in brain-inspired technologies for robotics, neural information processing in cooperative multi-robot systems.
The three-volume set LNCS 11857, 11858, and 11859 constitutes the refereed proceedings of the Second Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2019, held in Xi’an, China, in November 2019. The 165 revised full papers presented were carefully reviewed and selected from 412 submissions. The papers have been organized in the following topical sections: Part I: Object Detection, Tracking and Recognition, Part II: Image/Video Processing and Analysis, Part III: Data Analysis and Optimization.
This report attempts to fuse Army needs, specific to threat detection, with available evidence from academia and military sources. The report provides viable routes for short-term enhancement of threat detection training and long-term goals of a research program dedicated to improving the Army's understanding of threat detection. This review found two major avenues of research, visual attention and visual memory that would benefit research and understanding of attention and threat detection for current and future operational environments. Based on the review, at least three sequential skills are discussed as necessary for understanding and improving threat detection: attentiveness, recognition, and action. These skills orient and guide the Soldier in operational settings from the basic perceptual process at the attentiveness stage up through higher-order reasoning at the action stage. Training formats are explored including still images and high-fidelity simulations, all of which could be scaffolded upon a deliberate practice framework.
This two volumes set LNAI 8102 and LNAI 8103 constitutes the refereed proceedings of the 6th International Conference on Intelligent Robotics and Applications, ICIRA 2013, held in Busan, South Korea, in September 2013. The 147 revised full papers presented were carefully reviewed and selected from 184 submissions. The papers discuss various topics from intelligent robotics, automation and mechatronics with particular emphasis on technical challenges associated with varied applications such as biomedical application, industrial automation, surveillance and sustainable mobility.
A Complete Toolbox of Theories and Techniques The second edition of a bestseller, Handbook of Virtual Environments: Design, Implementation, and Applications presents systematic and extensive coverage of the primary areas of research and development within VE technology. It brings together a comprehensive set of contributed articles that address the principles required to define system requirements and design, build, evaluate, implement, and manage the effective use of VE applications. The contributors provide critical insights and principles associated with their given areas of expertise to provide extensive scope and detail on VE technology and its applications. What’s New in the Second Edition: Updated glossary of terms to promote common language throughout the community New chapters on olfactory perception, avatar control, motion sickness, and display design, as well as a whole host of new application areas Updated information to reflect the tremendous progress made over the last decade in applying VE technology to a growing number of domains This second edition includes nine new, as well as forty-one updated chapters that reflect the progress made in basic and applied research related to the creation, application, and evaluation of virtual environments. Contributions from leading researchers and practitioners from multidisciplinary domains provide a wealth of theoretical and practical information, resulting in a complete toolbox of theories and techniques that you can rely on to develop more captivating and effective virtual worlds. The handbook supplies a valuable resource for advancing VE applications as you take them from the laboratory to the real-world lives of people everywhere.
This book is a collection of the papers accepted by the ICIVIS 2022—The International Conference on Image, Vision and Intelligent Systems, held on August 15–17, 2022, in Jinan, China. The topics focus but are not limited to image, vision and intelligent systems. Each part can be used as an excellent reference by industry practitioners, university faculties, research fellows and undergraduates as well as graduate students who need to build a knowledge base of the most current advances and state of practice in the topics covered by this conference proceedings.
This book provides a broad overview of the benefits from a Systems Engineering design philosophy in architecting complex systems composed of artificial intelligence (AI), machine learning (ML) and humans situated in chaotic environments. The major topics include emergence, verification and validation of systems using AI/ML and human systems integration to develop robust and effective human-machine teams—where the machines may have varying degrees of autonomy due to the sophistication of their embedded AI/ML. The chapters not only describe what has been learned, but also raise questions that must be answered to further advance the general Science of Autonomy. The science of how humans and machines operate as a team requires insights from, among others, disciplines such as the social sciences, national and international jurisprudence, ethics and policy, and sociology and psychology. The social sciences inform how context is constructed, how trust is affected when humans and machines depend upon each other and how human-machine teams need a shared language of explanation. National and international jurisprudence determine legal responsibilities of non-trivial human-machine failures, ethical standards shape global policy, and sociology provides a basis for understanding team norms across cultures. Insights from psychology may help us to understand the negative impact on humans if AI/ML based machines begin to outperform their human teammates and consequently diminish their value or importance. This book invites professionals and the curious alike to witness a new frontier open as the Science of Autonomy emerges.