Download Free Vision Based Interaction Book in PDF and EPUB Free Download. You can read online Vision Based Interaction and write the review.

In its early years, the field of computer vision was largely motivated by researchers seeking computational models of biological vision and solutions to practical problems in manufacturing, defense, and medicine. For the past two decades or so, there has been an increasing interest in computer vision as an input modality in the context of human-computer interaction. Such vision-based interaction can endow interactive systems with visual capabilities similar to those important to human-human interaction, in order to perceive non-verbal cues and incorporate this information in applications such as interactive gaming, visualization, art installations, intelligent agent interaction, and various kinds of command and control tasks. Enabling this kind of rich, visual and multimodal interaction requires interactive-time solutions to problems such as detecting and recognizing faces and facial expressions, determining a person's direction of gaze and focus of attention, tracking movement of the body, and recognizing various kinds of gestures. In building technologies for vision-based interaction, there are choices to be made as to the range of possible sensors employed (e.g., single camera, stereo rig, depth camera), the precision and granularity of the desired outputs, the mobility of the solution, usability issues, etc. Practical considerations dictate that there is not a one-size-fits-all solution to the variety of interaction scenarios; however, there are principles and methodological approaches common to a wide range of problems in the domain. While new sensors such as the Microsoft Kinect are having a major influence on the research and practice of vision-based interaction in various settings, they are just a starting point for continued progress in the area. In this book, we discuss the landscape of history, opportunities, and challenges in this area of vision-based interaction; we review the state-of-the-art and seminal works in detecting and recognizing the human body and its components; we explore both static and dynamic approaches to "looking at people" vision problems; and we place the computer vision work in the context of other modalities and multimodal applications. Readers should gain a thorough understanding of current and future possibilities of computer vision technologies in the context of human-computer interaction.
This book constitutes the thoroughly refereed post-proceedings of the International Gesture Workshop, GW'99, held in Gif-sur-Yvette, France, in March 1999. The 16 revised long papers and seven revised short papers were carefully reviewed for inclusion in the book. Also included are four invited papers and the transcription of a round table discussion. The papers are organized in sections on human perception and production of gesture, localization and segmentation, recognition, sign language, gesture synthesis and animation, and multimodality.
This book constitutes the thoroughly refereed post-proceedings of the 7th International Workshop on Gesture-Based Human-Computer Interaction and Simulation, GW 2007, held in Lisbon, Portugal, in May 2007. The 31 revised papers presented were carefully selected from 53 submissions. The papers are organized in topical sections on analysis and synthesis of gesture; theoretical aspects of gestural communication and interaction; vision-based gesture recognition; sign language processing; gesturing with tangible interfaces and in virtual and augmented reality; gesture for music and performing arts; gesture for therapy and rehabilitation; and gesture in Mobile computing and usability studies.
Research on the multifaceted aspects of modeling, analysis, and synthesis of - man gesture is receiving growing interest from both the academic and industrial communities. On one hand, recent scienti?c developments on cognition, on - fect/emotion, on multimodal interfaces, and on multimedia have opened new perspectives on the integration of more sophisticated models of gesture in c- putersystems.Ontheotherhand,theconsolidationofnewtechnologiesenabling “disappearing” computers and (multimodal) interfaces to be integrated into the natural environments of users are making it realistic to consider tackling the complex meaning and subtleties of human gesture in multimedia systems, - abling a deeper, user-centered, enhanced physical participation and experience in the human-machine interaction process. The research programs supported by the European Commission and s- eral national institutions and governments individuated in recent years strategic ?elds strictly concerned with gesture research. For example, the DG Infor- tion Society of the European Commission (www.cordis.lu/ist) supports several initiatives, such as the “Disappearing Computer” and “Presence” EU-IST FET (Future and Emerging Technologies), the IST program “Interfaces & Enhanced Audio-Visual Services” (see for example the project MEGA, Multisensory - pressive Gesture Applications, www.megaproject.org), and the IST strategic - jective “Multimodal Interfaces.” Several EC projects and other funded research are represented in the chapters of this book. Awiderangeofapplicationscanbene?tfromadvancesinresearchongesture, from consolidated areas such as surveillance to new or emerging ?elds such as therapy and rehabilitation, home consumer goods, entertainment, and aud- visual, cultural and artistic applications, just to mention only a few of them.
This book presents selected papers from the 3rd International Conference on Micro-Electronics and Telecommunication Engineering, held at SRM Institute of Science and Technology, Ghaziabad, India, on 30-31 August 2019. It covers a wide variety of topics in micro-electronics and telecommunication engineering, including micro-electronic engineering, computational remote sensing, computer science and intelligent systems, signal and image processing, and information and communication technology.
Traditionally, scientific fields have defined boundaries, and scientists work on research problems within those boundaries. However, from time to time those boundaries get shifted or blurred to evolve new fields. For instance, the original goal of computer vision was to understand a single image of a scene, by identifying objects, their structure, and spatial arrangements. This has been referred to as image understanding. Recently, computer vision has gradually been making the transition away from understanding single images to analyzing image sequences, or video understanding. Video understanding deals with understanding of video sequences, e. g. , recognition of gestures, activities, facial expressions, etc. The main shift in the classic paradigm has been from the recognition of static objects in the scene to motion-based recognition of actions and events. Video understanding has overlapping research problems with other fields, therefore blurring the fixed boundaries. Computer graphics, image processing, and video databases have obvious overlap with computer vision. The main goal of computer graphics is to gener ate and animate realistic looking images, and videos. Researchers in computer graphics are increasingly employing techniques from computer vision to gen erate the synthetic imagery. A good example of this is image-based rendering and modeling techniques, in which geometry, appearance, and lighting is de rived from real images using computer vision techniques. Here the shift is from synthesis to analysis followed by synthesis.
This book constitutes the proceedings of the First Indo-Japanese conference on Perception and Machine Intelligence, PerMIn 2012, held in Kolkata, India, in January 2012. The 41 papers, presented together with 1 keynote paper and 3 plenary papers, were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections named perception; human-computer interaction; e-nose and e-tongue; machine intelligence and application; image and video processing; and speech and signal processing.
Leading scientists describe how advances in computer vision can change how we interact with computers.
Cognitive Computing for Human-Robot Interaction: Principles and Practices explores the efforts that should ultimately enable society to take advantage of the often-heralded potential of robots to provide economical and sustainable computing applications. This book discusses each of these applications, presents working implementations, and combines coherent and original deliberative architecture for human–robot interactions (HRI). Supported by experimental results, it shows how explicit knowledge management promises to be instrumental in building richer and more natural HRI, by pushing for pervasive, human-level semantics within the robot's deliberative system for sustainable computing applications. This book will be of special interest to academics, postgraduate students, and researchers working in the area of artificial intelligence and machine learning. Key features: - Introduces several new contributions to the representation and management of humans in autonomous robotic systems; - Explores the potential of cognitive computing, robots, and HRI to generate a deeper understanding and to provide a better contribution from robots to society; - Engages with the potential repercussions of cognitive computing and HRI in the real world. - Introduces several new contributions to the representation and management of humans in an autonomous robotic system - Explores cognitive computing, robots and HRI, presenting a more in-depth understanding to make robots better for society - Gives a challenging approach to those several repercussions of cognitive computing and HRI in the actual global scenario
Surveying normal hand function in health individuals, this book presents a conceptual framework for analysing what is known about it. It organises human-hand research on a continuum that ranges from activities that are sensory to those with a strong motor component. It is useful for researchers in neuroscience, cognitive science, and gerontology.