Download Free Visible Light Active Photocatalysis Book in PDF and EPUB Free Download. You can read online Visible Light Active Photocatalysis and write the review.

A comprehensive and timely overview of this important and hot topic, with special emphasis placed on environmental applications and the potential for solar light harvesting. Following introductory chapters on environmental photocatalysis, water splitting, and applications in synthetic chemistry, further chapters focus on the synthesis and design of photocatalysts, solar energy conversion, and such environmental aspects as the removal of water pollutants, photocatalytic conversion of CO2. Besides metal oxide-based photocatalysts, the authors cover other relevant material classes including carbon-based nanomaterials and novel hybrid materials. Chapters on mechanistic aspects, computational modeling of photocatalysis and Challenges and perspectives of solar reactor design for industrial applications complete this unique survey of the subject. With its in-depth discussions ranging from a comprehensive understanding to the engineering of materials and applied devices, this is an invaluable resource for a range of disciplines.
Visible Light Active Structured Photocatalysts for the Removal of Emerging Contaminants: Science and Engineering addresses the potential role of visible active photocatalytic processes for the removal of emerging contaminants. The book discusses the classification, sources and potential risks of emerging pollutants in water as well as the different synthesis methods of visible active structured photocatalysts with relation to their applications in photocatalytic processes for the removal of organic and inorganic emerging contaminants. Finally, the possible reaction pathways occurring during the visible or solar photocatalytic processes together with toxicity assessment are discussed. The book is a useful guide for academics, researchers and technicians in chemical engineering, chemistry and environmental sciences. - Defines emerging contaminants and what can be included in that group of contaminants commonly named "contaminants of emerging concern" - Presents different synthesis methods of visible active structured photocatalysts and their applications in solar or visible light photocatalytic systems for the removal of organic and inorganic emerging contaminants - Analyzes reaction pathways that occur during the visible or solar photocatalytic processes, also including toxicity assessments
Photocatalysis is a hot topic because it is an environmentally friendly approach toward the conversion of light energy into chemical energy at mild reaction environments. Also, it is well applied in several major areas such as water splitting, bacterial inactivation, and pollutants elimination, which is a possible solution to energy shortage and environmental issues. The fundamental knowledge and the frontier research progress in typical photocatalytic materials, such as TiO2-based and non-TiO2-based photocatalysts, are included in this book. Methods to improve the photocatalytic efficiency and to provide a hint for the rational design of the new photocatalysts are covered.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapter "Mechanochemical Forces as a Synthetic Tool for Zero and One-Dimensional Titanium Oxide-Based Nano-photocatalysts" is available open access under a CC BY 4.0 License via link.springer.com.
Filling the need for a ready reference that reflects the vast developments in this field, this book presents everything from fundamentals, applications, various reaction types, and technical applications. Edited by rising stars in the scientific community, the text focuses solely on visible light photocatalysis in the context of organic chemistry. This primarily entails photoinduced electron transfer and energy transfer chemistry sensitized by polypyridyl complexes, yet also includes the use of organic dyes and heterogeneous catalysts. A valuable resource to the synthetic organic community, polymer and medicinal chemists, as well as industry professionals.
This book "Concepts of Semiconductor Photocatalysis" contains recent research on the preparation, characterization, and potential applications of the semiconductor photocatalyst. This research is promising and has received a lot of interest in the last few decades. The book covers advanced topics on the optical, physical, structural, and electro-catalysis and photo-catalysis applications. Development of new and noble efficient technology is pointing researchers toward the safe, facile, non-toxic, eco-friendly route of synthesis-to-applications, which can be used for manufacture at a large scale. This book presents an overview of the current photocatalyst fundamental theory, substantial applications, and use of the research worldwide. It is an important book for research organizations, government research-centers, academic libraries, and R
This book details the chemistry of visible light-induced photocatalysis using different classes of nanocomposites. Starting with a general introduction and explanation of basic principles and mechanisms of (visible) light-induced photocatalysis in the first two chapters (not omitting a plaidoyer for furthering research and development in this promising field), the following chapters detail the different types and classes of nanocomposites currently used in light-induced photocatalytic applications, including e.g. metal and mixed metal-oxide nanoparticles and –composites, nanoporous materials, polymeric and carbon-based nanocomposites. They explain the characteristics and importance of the different types of nanocomposites, as well as their synthesis and fabrication.In the end of the book an outlook on the unique applications of novel nanocomposites is offered, for example in water treatment and disinfection and removal of pollutants from wastewater, self-cleaning window panes based on photoactive materials, and many more. The book also addresses the challenges in present photocatalytic research, and therefore is a must-read for everybody interested in the developing field of nanocomposites and visible light-induced photocatalysis.
A comprehensive and timely overview of this important and hot topic, with special emphasis placed on environmental applications and the potential for solar light harvesting. Following introductory chapters on environmental photocatalysis, water splitting, and applications in synthetic chemistry, further chapters focus on the synthesis and design of photocatalysts, solar energy conversion, and such environmental aspects as the removal of water pollutants, photocatalytic conversion of CO2. Besides metal oxide-based photocatalysts, the authors cover other relevant material classes including carbon-based nanomaterials and novel hybrid materials. Chapters on mechanistic aspects, computational modeling of photocatalysis and Challenges and perspectives of solar reactor design for industrial applications complete this unique survey of the subject. With its in-depth discussions ranging from a comprehensive understanding to the engineering of materials and applied devices, this is an invaluable resource for a range of disciplines.
Carbon-based photocatalysis has been considered as an economic, safe, renewable, and clean technology, for various applications. However, the pristine carbon material is usually restricted by unsatisfactory photocatalytic efficiency and practical applications due to the insufficient solar light absorption, the low-surface area, and the fast recombination of photogenerated electron-hole pairs. Various modification strategies, such as elemental and molecular doping, preparation of mesoporous carbon materials, and combination of conductive materials, are adopted to enhance the photocatalytic activity of carbon materials. In this book, we intend to describe the great potential of efficient and low-cost carbon-based materials in various realms, such as photodegradation of organic compounds, water splitting, and selective organic transformations.
This book comprises a detailed overview on the role of photocatalysts for environmental remediation, hydrogen production and carbon dioxide reduction. Effective ways to enhance the photocatalytic activity of the material via doping, hybrid material, laser light and nanocomposites have been discussed in this book. The book also further elaborates the role of metal nanoparticles, rare earth doping, sensitizers, surface oxygen vacancy, interface engineering and band gap engineering for enhancing the photocatalytic activity. An approach to recover the photocatalytic material via immobilization is also presented. This book brings to light much of the recent research in the development of such semiconductor photocatalytic systems. The book will thus be of relevance to researchers in the field of: material science, environmental science & technology, photocatalytic applications, newer methods of energy generation & conversion and industrial applications.