Download Free Virus Expression Vectors Book in PDF and EPUB Free Download. You can read online Virus Expression Vectors and write the review.

In this volume, the authors provide an excellent overview of how far the plant viral vector field has come. The discipline is no longer exclusively in the domain of academics—there is a small, but growing number of small biotechnology companies that exploit plant viruses as the platform for commercial innovation in crop improvement, industrial product manufacturing, and human and veterinary health care.
Sendai virus (SeV) is not just a mouse pathogen but is evolving into a cutting-edge component of biotechnology. SeV reverse genetics originating from a pure academic need to settle long-held questions in the biology and pathogenicity of nonsegmented negative strand RNA viruses (Mononegavirales) is about to bear the impressive fruit of multipurpose cytoplasmic (non-integrating) RNA vectors. This book brings together in one source the SeV biology revealed by conventional approaches and reverse genetics, the methods to construct the first-generation SeV vector and to generate safer versions, and the applications in medical settings that have left or are about to leave the laboratory bench. The applications, which already are diverse and have high medical impact, include use as vaccine vectors against AIDS and respiratory virus infections, creation of BioKnife to resect malignant tumors, induction of “footprint (transgene) free” pluripotent stem cells, and gene therapy for peripheral arterial disease. These achievements—which are just a few of many examples—were attainable only after rigorously incorporating the rich knowledge of SeV biology that has accumulated during the several decades since the discovery of the virus. Application of SeV vector is certain to expand greatly because of its extremely high performance in transgene expression and its remarkable target cell breadth.
This comprehensive account of the human herpesviruses provides an encyclopedic overview of their basic virology and clinical manifestations. This group of viruses includes human simplex type 1 and 2, Epstein–Barr virus, Kaposi's Sarcoma-associated herpesvirus, cytomegalovirus, HHV6A, 6B and 7, and varicella-zoster virus. The viral diseases and cancers they cause are significant and often recurrent. Their prevalence in the developed world accounts for a major burden of disease, and as a result there is a great deal of research into the pathophysiology of infection and immunobiology. Another important area covered within this volume concerns antiviral therapy and the development of vaccines. All these aspects are covered in depth, both scientifically and in terms of clinical guidelines for patient care. The text is illustrated generously throughout and is fully referenced to the latest research and developments.
This volume discusses protocols, ranging from vector production to delivery methods, used to execute gene therapy applications. Chapters are divided into four parts, and cover topics such as design, construction, and application of transcription activation-like effectors; multi-modal production of adeno-associated virus; construction of oncolytic herpes simplex virus; AAV-mediated gene delivery to the mouse liver; and intrathecal delivery of gene therapeutics by direct lumbar puncture in mice. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and authoritative, Viral Vectors for Gene Therapy: Methods and Protocols is a valuable resource for researchers, clinicians, and students looking to utilize viral vectors in gene therapy experiments.
Gene Therapy for Viral Infections provides a comprehensive review of the broader field of nucleic acid and its use in treating viral infections. The text bridges the gap between basic science and important clinical applications of the technology, providing a systematic, integrated review of the advances in nucleic acid-based antiviral drugs and the potential advantages of new technologies over current treatment options. Coverage begins with the fundamentals, exploring varying topics, including harnessing RNAi to silence viral gene expression, antiviral gene editing, viral gene therapy vectors, and non-viral vectors. Subsequent sections include detailed coverage of the developing use of gene therapy for the treatment of specific infections, the principles of rational design of antivirals, and the hurdles that currently face the further advancement of gene therapy technology. - Provides coverage of gene therapy for a variety of infections, including HBV, HCV, HIV, hemorrhagic fever viruses, and respiratory and other viral infections - Bridges the gap between the basic science and the important medical applications of this technology - Features a broad approach to the topic, including an essential overview and the applications of gene therapy, synthetic RNA, and other antiviral strategies that involve nucleic acid engineering - Presents perspectives on the future use of nucleic acids as a novel class of antiviral drugs - Arms the reader with the cutting-edge information needed to stay abreast of this developing field
Baculoviruses have proven to be the most powerful and versatile eukaryotic expression vectors available. This unique laboratory manual is designed to help both beginning and experienced researchers construct and use baculovirus vector systems. It simplifies selection of the most appropriatebaculovirus vector design for a given problem, then describes each step of the implementation process--from vector construction to large-scale protein production. The book provides an understanding of how the vectors work; a biological overview of cells, viruses, plasmids, and promoters; guidelinesfor choosing optimum vectors; protocols for growing insect cells and recombinant viruses; methods of analyzing protein products and scaling up protein production; techniques for producing proteins in insect larvae; and easy-to-use maps charting available expression vectors. This comprehensiveapproach has many benefits for researchers and students alike. It allows them to understand how and why the vector system works and offers a rapid comparison of options for choosing the right virus, plasmid or promoter for vector design and construction, with a minimum amount of lost time. Themanual is an invaluable resource for every individual engaged in the production of proteins for any purpose.
Human gene therapy holds great promise for the cure of many genetic diseases. In order to achieve such a cure there are two requirements. First, the affected gene must be cloned, its se quence determined and its regulation adequately characterized. Second, a suitable vector for the delivery of a good copy of the affected gene must be available. For a vector to be of use several attributes are highly desirable: these include ability to carry the intact gene (although this may be either the genomic or the cDNA form) in a stable form, ability to introduce the gene into the desired cell type, ability to express the introduced gene in an appropriately regulated manner for an extended period of time, and a lack of toxicity for the recipient. Also of concern is the frequency of cell transformation and, in some cases, the ability to introduce the gene into nondividing stem cells. Sev eral animal viruses have been tested as potential vectors, but none has proven to have all the desired properties described above. For example, retroviruses are difficult to propagate in sufficient titers, do not integrate into nondividing cells, and are of concern because of their oncogenic properties in some hosts and because they integrate at many sites in the genome and, thus, are potentially insertional mutagens. Additionally, genes introduced by retroviral vectors are frequently expressed for relatively short periods of time. A second virus used as a vector in model systems has been adenovirus (Ad).
The past decade has witnessed an explosion of information on the molecular biology of insect viruses and a frenzy of activity in applying this information to medicine and agriculture. Genetically engineered baculoviruses are presently being tested for commercial use as pesticides, and the study of such viruses is also revealing remarkable insights into basic cellular processes such as apoptosis. This comprehensive volume provides readers with knowledge of basic and applied baculovirology so that current literature in the field can be appreciated.
The huge potential for gene therapy to cure a wide range of diseases has led to high expectations and a great increase in research efforts in this area, particularly in the study of delivery via viral vectors, widely considered to be more efficient than DNA transfection. In Viral Vectors for Gene Therapy: Methods and Protocols, experts in the field present a collection of their knowledge and experience featuring methodologies that involve virus production, transferring protocols, and evaluating the efficacy of gene products. While thoroughly covering the most popular viral vector systems of adenovirus, retrovirus, and adeno-associated virus, this detailed volume also explores less common viral vector systems such as baculovirus, herpes virus, and measles virus, the growing interest in which is creating a considerable demand for large scale manufacturing and purification procedures. Written in the highly successful Methods in Molecular BiologyTM series format, many chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and vital tips on troubleshooting and avoiding known pitfalls. Comprehensive and practical, Viral Vectors for Gene Therapy: Methods and Protocols provides basic principles accessible to scientists from a wide variety of backgrounds for the development of gene therapy viral products that are safe and effective.
This unique book focuses on the DNA viruses in the human population that are associated with cancers. It covers most of the viruses that are thought to contribute to human malignancy. This book represents a comprehensive review of the field of DNA tumor virology. Right now, while there are books out there that cover individual viruses that are also covered in this book, there is no single book that covers this topic comprehensively. This book is the first current, comprehensive review of its kind in the market.