Download Free Virus Dynamics Mathematical Principles Of Immunology And Virology Book in PDF and EPUB Free Download. You can read online Virus Dynamics Mathematical Principles Of Immunology And Virology and write the review.

This groundbreaking book describes the emerging field of theoretical immunology, in particular the use of mathematical models to describe the spread of infectious diseases within patients. It reveals fascinating insights into the dynamics of viral and other infections, and the interactions between infectious agents and immune responses. Structured around the examples of HIV/AIDS and hepatitis B, Nowak and May show how mathematical models can help researchers to understand the detailed dynamics of infection and the effects of antiviral therapy. Models are developed to describe the dynamics of drug resistance, immune responses, viral evolution and mutation, and to optimise the design of therapy and vaccines. - ;We know, down to the tiniest details, the molecular structure of the human immunodeficiency virus (HIV). Yet despite this tremendous accomplishment, and despite other remarkable advances in our understanding of individual viruses and cells of the immune system, we still have no agreed understanding of the ultimate course and variability of the pathogenesis of AIDS. Gaps in our understanding like these impede our efforts towards developing effective therapies and preventive vaccines. Martin Nowak and Robert M May describe the emerging field of theoretical immunology in this accessible and well- written text. Using mathematical modelling techniques, the authors set out their ideas about how populations of viruses and populations of immune system cells may interact in various circumstances, and how infectious diseases spread within patients. They explain how this approach to understanding infectious diseases can reveal insights into the dynamics of viral and other infections, and the interactions between infectious agents and immune responses. The book is structured around the examples of HIV/AIDS and Hepatitis B virus, although the approaches described will be more widely applicable. The authors use mathematical tools to uncover the detailed dynamics of the infection and the effects of antiviral therapy. Models are developed to describe the emergence of drug resistance, and the dynamics of immune responses, viral evolution, and mutation. The practical implications of this work for optimisation of the design of therapy and vaccines are discussed. The book concludes with a glance towards the future of this fascinating, and potentially highly useful, field of study. - ;... an excellent introduction to a field that has the potential to advance substantially our understanding of the complex interplay between virus and host - Nature
This text describes the emerging field of theoretical immunology, in particular the use of mathematical models to describe the spread of infectious diseases within patients. It reveals insights into the dynamics of viral & other infections.
also occurs. New outbreaks of yellow fever have occurred in Colombia and Trinidad and new outbreaks of rift valley fever have occurred in Egypt. Chapter 6, Arenaviruses: The biochemical and physical properties have now been clar ified, and they show a remarkable uniformity in the various viruses constituting the group. The possibility that prenatal infection with LCM may result in hydrocephalus and chorioretinitis has been raised. Serologic surveys have suggested the existence of Lassa virus infection in Guinea, Central African Empire, Mali, Senegal, Cameroon, and Benin, in addition to earlier identification in Nigeria, Liberia, and Sierra Leone. Chapter 7, Coronaviruses: New studies have confirmed the important role of these viruses in common respiratory illnesses of children and adults. The viruses are now known to contain a single positive strand of RNA. About 50% of corona virus infections result in clinical illness. About 5% of common colds are caused by strain DC 43 in winter. Chapter 8, Cytomegalovirus: Sections on pathogenesis of CMV in relation to organ transplantation and mononucleosis, as well as sections on the risk and features of con genital infection and disease, have been expanded. There are encouraging preliminary results with a live CMV vaccine, but the questions of viral persistence and oncogenicity require further evaluation.
Assuming that the complex phenomena underlying the operation of the immune system may be better understood through the collaborative efforts of theorists and experimentalists viewing the same phenomen
Publisher Description
This book provides case studies that can be used in Systems Biology related classes. Each case study has the same structure which answers the following questions: What is the biological problem and why is it interesting? What are the relevant details with regard to cell physiology and molecular mechanisms? How are the details put together into a mathematical model? How is the model analyzed and simulated? What are the results of the model? How do they compare to the known facts of the cell physiology? Does the model make predictions? What can be done to extend the model? The book presents a summary of results and references to more relevant sources. The volume contains the classic collection of topics and studies that are well established yet novel in the systems biology field.
In many respects, biology is the new frontier for applied mathematicians. This book demonstrates the important role mathematics plays in the study of some biological problems. It introduces mathematicians to the biological sciences and provides enough mathematics for bioscientists to appreciate the utility of the modelling approach. The book presents a number of diverse topics, such as neurophysiology, cell biology, immunology, and human genetics. It examines how research is done,what mathematics is used, what the outstanding questions are, and how to enter the field. Also given is a brief historical survey of each topic, putting current research into perspective. The book is suitable for mathematicians and biologists interested in mathematical methods in biology.
This book provides case studies that can be used in Systems Biology related classes. Each case study has the same structure which answers the following questions: What is the biological problem and why is it interesting? What are the relevant details with regard to cell physiology and molecular mechanisms? How are the details put together into a mathematical model? How is the model analyzed and simulated? What are the results of the model? How do they compare to the known facts of the cell physiology? Does the model make predictions? What can be done to extend the model? The book presents a summary of results and references to more relevant sources. The volume contains the classic collection of topics and studies that are well established yet novel in the systems biology field.
Advances in Epidemiological Modeling and Control of Viruses covers recent and advanced research works in the field of epidemiological modeling, with special emphasis on new strategies to control the occurrence and reoccurrence of viruses. The models included in this book can be used to study the dynamics of different viruses, searching for control measures, and epidemic models under various effects and environments. This book covers different models and methods of modeling, including data-driven approaches. The authors and editors are experienced researchers, and each chapter has been designed to provide readers with leading-edge information on topics discussed. - Includes models to describe global and local dynamics of various viruses - Provides readers with control strategies for occurrence and reoccurrence of viruses - Includes epidemic models under various effects and environments - Provides readers with a robust set of mathematical tools and techniques for epidemiological modeling
This is the first history of the Rockefeller Foundation's International Health Division (1913-1951), which was one of the most important public health agencies of the 20th century, a precursor of the World Health Organization. Based on extensive primary research, the book is enlivened with character sketches and descriptions of the conflicts among the "medical barons" who ran the division as they attempted to eradicate many serious diseases and to set up schools of public health and nursing around the world.