Download Free Viral Interactions With Host Rna Decay Pathways Book in PDF and EPUB Free Download. You can read online Viral Interactions With Host Rna Decay Pathways and write the review.

This book is a printed edition of the Special Issue "Viral Interactions with Host RNA Decay Pathways" that was published in Viruses
Dysfunction of nuclear-cytoplasmic transport systems has been associated with many human diseases. Thus, understanding of how functional this transport system maintains, or through dysfunction fails to maintain remains the core question in cell biology. In eukaryotic cells, the nuclear envelope (NE) separates the genetic transcription in the nucleus from the translational machinery in the cytoplasm. Thousands of nuclear pore complexes (NPCs) embedded on the NE selectively mediate the bidirectional trafficking of macromolecules such as RNAs and proteins between these two cellular compartments. In this book, the authors integrate recent progress on the structure of NPC and the mechanism of nuclear-cytoplasmic transport system in vitro and in vivo.
This comprehensive account of the human herpesviruses provides an encyclopedic overview of their basic virology and clinical manifestations. This group of viruses includes human simplex type 1 and 2, Epstein–Barr virus, Kaposi's Sarcoma-associated herpesvirus, cytomegalovirus, HHV6A, 6B and 7, and varicella-zoster virus. The viral diseases and cancers they cause are significant and often recurrent. Their prevalence in the developed world accounts for a major burden of disease, and as a result there is a great deal of research into the pathophysiology of infection and immunobiology. Another important area covered within this volume concerns antiviral therapy and the development of vaccines. All these aspects are covered in depth, both scientifically and in terms of clinical guidelines for patient care. The text is illustrated generously throughout and is fully referenced to the latest research and developments.
It has been ten years since the publication of the third edition of this seminal text on plant virology, during which there has been an explosion of conceptual and factual advances. The fourth edition updates and revises many details of the previous editon, while retaining the important older results that constitute the field's conceptual foundation. Key features of the fourth edition include: * Thumbnail sketches of each genera and family groups * Genome maps of all genera for which they are known * Genetic engineered resistance strategies for virus disease control * Latest understanding of virus interactions with plants, including gene silencing * Interactions between viruses and insect, fungal, and nematode vectors * New plate section containing over 50 full-color illustrations.
This is the first comprehensive book on human/animal gene responses to RNA viral infections, including prevalent, emerging and re-emerging RNA viruses such as HIV, SARS-CoV, West Nile virus, influenza virus and many others. Human gene responses are reviewed by leading virologists worldwide in the following aspects: (i) the altered gene expression profiles at the transcriptional and translational levels detected with cutting-edge technologies such as cDNA microarray and proteomics; (ii) host innate and adapted immune responses to viral replication in target organs; (iii) virus-activated signal transduction pathways in cell survival, apoptosis and autophagosomal pathways; and (iv) the small interfering RNA/microRNA-mediated gene silencing pathway, a recently characterized new host defense mechanism against viral infection. Organized into 29 highly accessible and well-illustrated chapters, this volume explores state-of-the-art knowledge of the molecular mechanisms of RNA virus infection and host?virus interactions. This comprehensive compilation of the altered gene expression profiles and signal transduction pathways in host cells in response to the majority of human/animal RNA viruses opens new directions for basic and clinical research on viral pathogenesis, and also provides valuable biomarkers for researchers to select gene targets in the development of diagnostic tests and antiviral therapeutics for a number of infectious diseases.
Tropical emerging diseases pose a significant risk for the circulation of old and new pathogens in areas previously unknown, also implying the possibility of new morbidities and mortalities and new consequences for naïve populations. Globalization, migration and travel are key factors for tropical diseases, and represent the need for integration of tropical medicine, travel medicine and epidemiology in the understanding of such complex situations. Neglected tropical diseases such as leprosy or Chagas disease, arboviral diseases, HIV, Ebola, and arenaviral infections are just a few examples. This book tries to update significant epidemiological and clinical research in many aspects with a multinational perspective.
Nucleases, enzymes that restructure or degrade nucleic acid polymers, are vital to the control of every area of metabolism. They range from “housekeeping” enzymes with broad substrate ranges to extremely specific tools (1). Many types of nucleases are used in lab protocols, and their commercial and clinical uses are expanding. The purpose of Nuclease Methods and Protocols is to introduce the reader to some we- characterized protein nucleases, and the methods used to determine their activity, structure, interaction with other molecules, and physiological role. Each chapter begins with a mini-review on a specific nuclease or a nuclease-related theme. Although many chapters cover several topics, they were arbitrarily divided into five parts: Part I, “Characterizing Nuclease Activity,” includes protocols and assays to determine general (processive, distributive) or specific mechanisms. Methods to assay nuclease products, identify cloned nucleases, and determine their physiological role are also included here. Part II, “Inhibitors and Activators of Nucleases,” summarizes assays for measuring the effects of other proteins and small molecules. Many of these inhibitors have clinical relevance. Part III, “Relating Nuclease Structure and Function,” provides an overview of methods to determine or model the 3-D structure of nucleases and their complexes with substrates and inhibitors. A 3-D structure can greatly aid the rational design of nucleases and inhibitors for specific purposes. Part IV, “Nucleases in the Clinic,” summarizes assays and protocols suitable for use with t- sues and for nuclease based therapeutics.
This book provides a compendium of state-of-the-art methods for the labeling, detection, and purification of RNA and RNA-protein complexes and thereby constitutes an important toolbox for researchers interested in understanding the complex roles of RNA molecules in development, signaling, and disease. Beginning with a section on in situ detection of RNA molecules using FISH techniques, the volume continues with parts exploring in vivo imaging of RNA transport and localization, imaging and analysis of RNA uptake and transport between cells, identification and analysis of RNA-binding proteins, guide RNAs in genome editing, as well as other specific analytical techniques. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, RNA Tagging: Methods and Protocols serves as a vital reference for researchers looking to further the increasingly important research in RNA biology.
Virus as Composition, Complexity, Quasispecies, Dynamics, and Biological Implications, Second Edition, explains the fundamental concepts surrounding viruses as complex populations during replication in infected hosts. Fundamental phenomena in virus behavior, such as adaptation to changing environments, capacity to produce disease, and the probability to be transmitted or respond to treatment all depend on virus population numbers. Concepts such as quasispecies dynamics, mutations rates, viral fitness, the effect of bottleneck events, population numbers in virus transmission and disease emergence, and new antiviral strategies are included. The book's main concepts are framed by recent observations on general virus diversity derived from metagenomic studies and current views on the origin and role of viruses in the evolution of the biosphere. - Features current views on key steps in the origin of life and origins of viruses - Includes examples relating ancestral features of viruses with their current adaptive capacity - Explains complex phenomena in an organized and coherent fashion that is easy to comprehend and enjoyable to read - Considers quasispecies as a framework to understand virus adaptability and disease processes