Download Free Village Level Aquaculture Development In Africa Book in PDF and EPUB Free Download. You can read online Village Level Aquaculture Development In Africa and write the review.

The current status and development of small-scale village based aquaculture, particularly fish farming, in Africa, has been the subject of some discussion in recent years. The ensuing conclusions and recommendations were crystallized in a 10-point Resolution on Village Aquaculture Development in Africa.
Aquaculture is a rapidly growing, successful approach to improving diets by providing more high quality fish and shellfish protein. It is also an industry with major unresolved issues because of its negative impact on the environment. This book is a pioneering effort in the development of environmentally benign aquaculture methods.
The objective of the Consultation was to provide FAO and its members with information and advice on the role of small-scale aquaculture in rural development. To this end, participants were asked to analyze and reflect on four keynote papers prepared by selected participants. In addition, four information papers were presented and discussed. This document presents a summary of discussions and principal conclusions reached, followed by abstracts and full versions of the overview and thematic papers plus the abstracts of the information papers.
"(Reprint. First published in 1998) The present study is an update of an earlier assessment of warm-water fish farming potential in Africa, by Kapetsky (1994). The objective of this study was to assess locations and areal expanses that have potential for warm-water and temperate-water fish farming in continental Africa. The study was based on previous estimates for Africa by the above author, and on estimates of potential for warm-water and temperate-water fish farming in Latin America by Kapetsky and Nath (1997). However, a number of refinements have been made. The most important refinement was that new data allowed a sevenfold increase in resolution over that used in the previous Africa study, and a twofold increase over that of Latin America (i.e. to 3 arc minutes, equivalent to 5 km x 5 km grids at the equator), making the present results more usable in order to assess fish farming potential at the national level. A geographical information system (GIS) was used to evaluate each grid cell on the basis of several land-quality factors important for fish-farm development and operation regardless of the fish species used. Protected areas, large inland water bodies and major cities were identified as constraint areas, and were excluded from any fish farming development altogether. Small-scale fish farming potential was assessed on the basis of four factors: water requirement from ponds due to evaporation and seepage, soil and terrain suitability for pond construction based on a variety of soil attributes and slopes, availability of livestock wastes and agricultural by-products as feed inputs based on manure and crop potential, and farm-gate sales as a function of population density. For commercial farming, an urban market potential criterion was added based on population size of urban centres and travel time proximity. Both small-scale and commercial models were developed by weighting the above factors using a multi-criteria decision-making procedure. A bioenergetics model was incorporated into the GIS to predict, for the first time, fish yields across Africa. A gridded water temperature data set was used as input to a bioenergetics model to predict number of crops per year for the following three species: Nile tilapia (Oreochromis niloticus), African catfish (Clarias gariepinus) and Common carp (Cyprinus carpio). Similar analytical approaches to those by Kapetsky and Nath (1997) were followed in the yield estimation. However, different specifications were used for small-scale and commercial farming scenarios in order to reflect the types of culture practices found in Africa. Moreover, the fish growth simulation model, documented in Kapetsky and Nath (1997), was refined to enable consideration of feed quality and high fish biomass in ponds. The small-scale and commercial models derived from the land-quality evaluation were combined with the yield potential of each grid cell for each of the three fish species to show the coincidence of each land-quality suitability class with a range of yield potentials. Finally, the land quality-fish yield potential combinations were put together to show where the fish farming potential coincided for the three fish species."
The culmination of over a decade's worth of research by the Pond Dynamics/Aquaculture Collaborative Research Support Program (CRSP), Dynamics of Pond Aquaculture not only explains the physical, chemical, and biological processes that interact in pond culture systems, but also presents real-world research findings and considers the people who depend on these systems. This book uses data from CRSP field research sites in East Africa, Southeast Asia, Central America, and North America to present a complete picture of the pond system and the environment in which it exists. A thorough study of the principles and practices of aquaculture, the book reflects the state of the art in pond aquaculture and incorporates recent advances that have changed the science in the last decade or so. It provides a thorough review of the many methods, techniques, and ideas that comprise this complex and fascinating area of study.