Download Free Video Segmentation And Its Applications Book in PDF and EPUB Free Download. You can read online Video Segmentation And Its Applications and write the review.

Video segmentation has become one of the core areas in visual signal processing research. The objective of Video Segmentation and Its Applications is to present the latest advances in video segmentation and analysis techniques while covering the theoretical approaches, real applications and methods being developed in the computer vision and video analysis community. The book will also provide researchers and practitioners a comprehensive understanding of state-of-the-art of video segmentation techniques and a resource for potential applications and successful practice.
Video segmentation has become one of the core areas in visual signal processing research. The objective of Video Segmentation and Its Applications is to present the latest advances in video segmentation and analysis techniques while covering the theoretical approaches, real applications and methods being developed in the computer vision and video analysis community. The book will also provide researchers and practitioners a comprehensive understanding of state-of-the-art of video segmentation techniques and a resource for potential applications and successful practice.
"This book attempts to bring together a selection of the latest results of state-of-the art research in image and video segmentation, one of the most critical tasks of image and video analysis that has the objective of extracting information (represented by data) from an image or a sequence of images (video)"--Provided by publisher.
This second edition provides easy access to important concepts, issues and technology trends in the field of multimedia technologies, systems, techniques, and applications. Over 1,100 heavily-illustrated pages — including 80 new entries — present concise overviews of all aspects of software, systems, web tools and hardware that enable video, audio and developing media to be shared and delivered electronically.
This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models
This book presents a selective collection of papers from the 20th International Symposium on Computer and Information Sciences, held in Istanbul, Turkey. The selected papers span a wide spectrum of topics in computer networks, including internet and multimedia, security and cryptography, wireless networks, parallel and distributed computing, and performance evaluation. These papers represent the results of the latest research of academicians from more than 30 countries.
Welcome to the proceedings of the 8th European Conference on Computer - sion! Following a very successful ECCV 2002, the response to our call for papers was almost equally strong – 555 papers were submitted. We accepted 41 papers for oral and 149 papers for poster presentation. Several innovations were introduced into the review process. First, the n- ber of program committee members was increased to reduce their review load. We managed to assign to program committee members no more than 12 papers. Second, we adopted a paper ranking system. Program committee members were asked to rank all the papers assigned to them, even those that were reviewed by additional reviewers. Third, we allowed authors to respond to the reviews consolidated in a discussion involving the area chair and the reviewers. Fourth, thereports,thereviews,andtheresponsesweremadeavailabletotheauthorsas well as to the program committee members. Our aim was to provide the authors with maximal feedback and to let the program committee members know how authors reacted to their reviews and how their reviews were or were not re?ected in the ?nal decision. Finally, we reduced the length of reviewed papers from 15 to 12 pages. ThepreparationofECCV2004wentsmoothlythankstothee?ortsofthe- ganizing committee, the area chairs, the program committee, and the reviewers. We are indebted to Anders Heyden, Mads Nielsen, and Henrik J. Nielsen for passing on ECCV traditions and to Dominique Asselineau from ENST/TSI who kindly provided his GestRFIA conference software. We thank Jan-Olof Eklundh and Andrew Zisserman for encouraging us to organize ECCV 2004 in Prague.
"This book brings together various research methodologies and trends in emerging areas of application of computer vision and image processing for those interested in the research developments of this rapidly growing field"--
Deep Learning in Object Recognition, Detection, and Segmentation provides a comprehensive introductory overview of a topic that is having major impact on many areas of research in signal processing, computer vision, and machine learning.
A unique collection of algorithms and lab experiments for practitioners and researchers of digital image processing technology With the field of digital image processing rapidly expanding, there is a growing need for a book that would go beyond theory and techniques to address the underlying algorithms. Digital Image Processing Algorithms and Applications fills the gap in the field, providing scientists and engineers with a complete library of algorithms for digital image processing, coding, and analysis. Digital image transform algorithms, edge detection algorithms, and image segmentation algorithms are carefully gleaned from the literature for compatibility and a track record of acceptance in the scientific community. The author guides readers through all facets of the technology, supplementing the discussion with detailed lab exercises in EIKONA, his own digital image processing software, as well as useful PDF transparencies. He covers in depth filtering and enhancement, transforms, compression, edge detection, region segmentation, and shape analysis, explaining at every step the relevant theory, algorithm structure, and its use for problem solving in various applications. The availability of the lab exercises and the source code (all algorithms are presented in C-code) over the Internet makes the book an invaluable self-study guide. It also lets interested readers develop digital image processing applications on ordinary desktop computers as well as on Unix machines.