Download Free Vibrational Spectroscopy Of Solids Book in PDF and EPUB Free Download. You can read online Vibrational Spectroscopy Of Solids and write the review.

This 1972 monograph is devoted to the analysis and interpretation of the infrared and Raman spectra of solid compounds, frequently used for their identification and characterization. It was thought unsatisfactory to analyse such spectra by the theory applicable to gas-phase samples, though this was frequently done. Furthermore, the results obtained by far infrared and laser Raman spectrometers, which detect the movement of atoms and/or molecules as a whole, had no gas-phase analogy. A separate approach to solid state vibrational spectra was therefore proposed within this volume. Dr Sherwood describes the solid state physics of vibrational spectroscopy and extends it to the more complex structures of low symmetry. He assumes an understanding of the infrared and Raman spectra of gases.
This book has its or1g1n in a NATO Summer School organized from June 25 to July 7 1979, in Menton, France. The purpose of this School was a comparative study of the various aspects of vibra tional spectroscopy in molecular liquids and solids. This field has been rapidly expanding in the last decade; unfortunately, its development took place independently for liquids and for solids. In these circumstances, the comparison of the basic concepts and techniques used in these two branches of physics appeared as a necessity. The lectures given at the Menton Advanced Study Institute, as well as the exceptionally fruitful and lively discussions which followed them confirmed this point of view. The need of putting together these lectures, in the form of a monograph, clearly appeared during the ASI and the lecturers accepted to write down the material they presented at the Institute, improved thanks to the remarks of the participants. It is the result of this collective work which appears in the familiar Plenum Series.
It is very rewarding for an author to know that his book is to be translated into another language and become available to a new circle of readers. The study of the optics and spectroscopy of activated crys stals has continued to grow. The development and first remarkable successes of light scattering by impurities in crystals have occurred in the comparatively short time since my original book was sent to press. After experimental observation of the sidebands (wings) in impurity infrared absorption spectra, interest in these spectra as a source of information on the vibrations of a crystal in the neigh borhood of an impurity has increased significantly. Therefore, in addition to making minor corrections, r have supplemented the section on the effect of anharmonicity (section25) and written two new sections and another Appendix on infrared ab sorption, scattering of light by an impurity center in a crystal, and the adiabatic approximation, respectively. The bibliography has received several dozen new entries, but it nevertheless does not pretend to be complete. r hope that the American edition is useful and in some de gree corresponds to the general deepening of our physical under standing of solids.
This book has its or1g1n in a NATO Summer School organized from June 25 to July 7 1979, in Menton, France. The purpose of this School was a comparative study of the various aspects of vibra tional spectroscopy in molecular liquids and solids. This field has been rapidly expanding in the last decade; unfortunately, its development took place independently for liquids and for solids. In these circumstances, the comparison of the basic concepts and techniques used in these two branches of physics appeared as a necessity. The lectures given at the Menton Advanced Study Institute, as well as the exceptionally fruitful and lively discussions which followed them confirmed this point of view. The need of putting together these lectures, in the form of a monograph, clearly appeared during the ASI and the lecturers accepted to write down the material they presented at the Institute, improved thanks to the remarks of the participants. It is the result of this collective work which appears in the familiar Plenum Series.
Inelastic neutron scattering (INS) is a spectroscopic technique in which neutrons are used to probe the dynamics of atoms and molecules in solids and liquids. This book is the first, since the late 1960s, to cover the principles and applications of INS as a vibrational-spectroscopic technique. It provides a hands-on account of the use of INS, concentrating on how neutron vibrational spectroscopy can be employed to obtain chemical information on a range of materials that are of interest to chemists, biologists, materials scientists, surface scientists and catalyst researchers. This is an accessible and comprehensive single-volume primary text and reference source.
This text is an introductory compilation of basic concepts, methods and applications in the field of spectroscopy. It discusses new radiation sources such as lasers and synchrotrons and describes the linear response together with the basic principles and the technical background for various scattering experiments.
This book provides a comprehensive treatment of the two fundamental aspects of a solid that determine its physical properties: lattice structure and atomic vibrations (phonons). The elements of group theory are extensively developed and used as a tool to show how the symmetry of a solid and the vibrations of the atoms in the solid lead to the physical properties of the material. The uses of different types of spectroscopy techniques that elucidate the lattice structure of a solid and the normal vibrational modes of the atoms in the solid are described. The interaction of light with solids (optical spectroscopy) is described in detail including how lattice symmetry and phonons affect the spectral properties and how spectral properties provide information about the material's symmetry and normal modes of lattice vibrations. The effects of point defects (doping) on the lattice symmetry and atomic vibrations and thus the spectral properties are discussed and used to show how material symmetry and lattice vibrations are critical in determining the properties of solid state lasers.