Download Free Vhdl Hardware Description And Design Book in PDF and EPUB Free Download. You can read online Vhdl Hardware Description And Design and write the review.

VHDL is a comprehensive language that allows a user to deal with design complexity. Design, and the data representing a design, are complex by the very nature of a modern digital system constructed from VLSI chips. VHDL is the first language to allow one to capture all the nuances of that complexity, and to effectively manage the data and the design process. As this book shows, VHDL is not by its nature a complex language. In 1980, the U. S. Government launched a very aggressive effort to advance the state-of-the-art in silicon technology. The objective was to significantly enhance operating performance and circuit density for Very Large Scale Integration (VLSI) silicon chips. The U. S. Government realized that in order for contractors to be able to work together to develop VLSI products, to document the resulting designs, to be able to reuse the designs in future products, and to efficiently upgrade existing designs, they needed a common communication medium for the design data. They wanted the design descriptions to be computer readable and executable. They also recognized that with the high densities envisioned for the U. S. Government's Very High Speed Integrated Circuit (VHSIC) chips and the large systems required in future procurements, a means of streamlining the design process and managing the large volumes of design data was required. Thus was born the concept of a standard hardware design and description language to solve all of these problems.
This book guides readers through the design of hardware architectures using VHDL for digital communication and image processing applications that require performance computing. Further it includes the description of all the VHDL-related notions, such as language, levels of abstraction, combinational vs. sequential logic, structural and behavioral description, digital circuit design, and finite state machines. It also includes numerous examples to make the concepts presented in text more easily understandable.
The purpose of this book is to introduce VHSIC Hardware Description Lan guage (VHDL) and its use for synthesis. VHDL is a hardware description language which provides a means of specifying a digital system over different levels of abstraction. It supports behavior specification during the early stages of a design process and structural specification during the later implementation stages. VHDL was originally introduced as a hardware description language that per mitted the simulation of digital designs. It is now increasingly used for design specifications that are given as the input to synthesis tools which translate the specifications into netlists from which the physical systems can be built. One problem with this use of VHDL is that not all of its constructs are useful in synthesis. The specification of delay in signal assignments does not have a clear meaning in synthesis, where delays have already been determined by the im plementationtechnolo~y. VHDL has data-structures such as files and pointers, useful for simulation purposes but not for actual synthesis. As a result synthe sis tools accept only subsets of VHDL. This book tries to cover the synthesis aspect of VHDL, while keeping the simulation-specifics to a minimum. This book is suitable for working professionals as well as for graduate or under graduate study. Readers can view this book as a way to get acquainted with VHDL and how it can be used in modeling of digital designs.
The skills and guidance needed to master RTL hardware design This book teaches readers how to systematically design efficient, portable, and scalable Register Transfer Level (RTL) digital circuits using the VHDL hardware description language and synthesis software. Focusing on the module-level design, which is composed of functional units, routing circuit, and storage, the book illustrates the relationship between the VHDL constructs and the underlying hardware components, and shows how to develop codes that faithfully reflect the module-level design and can be synthesized into efficient gate-level implementation. Several unique features distinguish the book: * Coding style that shows a clear relationship between VHDL constructs and hardware components * Conceptual diagrams that illustrate the realization of VHDL codes * Emphasis on the code reuse * Practical examples that demonstrate and reinforce design concepts, procedures, and techniques * Two chapters on realizing sequential algorithms in hardware * Two chapters on scalable and parameterized designs and coding * One chapter covering the synchronization and interface between multiple clock domains Although the focus of the book is RTL synthesis, it also examines the synthesis task from the perspective of the overall development process. Readers learn good design practices and guidelines to ensure that an RTL design can accommodate future simulation, verification, and testing needs, and can be easily incorporated into a larger system or reused. Discussion is independent of technology and can be applied to both ASIC and FPGA devices. With a balanced presentation of fundamentals and practical examples, this is an excellent textbook for upper-level undergraduate or graduate courses in advanced digital logic. Engineers who need to make effective use of today's synthesis software and FPGA devices should also refer to this book.
VHDL, the IEEE standard hardware description language for describing digital electronic systems, has recently been revised. The Designer's Guide to VHDL has become a standard in the industry for learning the features of VHDL and using it to verify hardware designs. This third edition is the first comprehensive book on the market to address the new features of VHDL-2008. - First comprehensive book on VHDL to incorporate all new features of VHDL-2008, the latest release of the VHDL standard - Helps readers get up to speed quickly with new features of the new standard - Presents a structured guide to the modeling facilities offered by VHDL - Shows how VHDL functions to help design digital systems - Includes extensive case studies and source code used to develop testbenches and case study examples - Helps readers gain maximum facility with VHDL for design of digital systems
This book introduces a modern approach to embedded system design, presenting software design and hardware design in a unified manner. It covers trends and challenges, introduces the design and use of single-purpose processors ("hardware") and general-purpose processors ("software"), describes memories and buses, illustrates hardware/software tradeoffs using a digital camera example, and discusses advanced computation models, controls systems, chip technologies, and modern design tools. For courses found in EE, CS and other engineering departments.
A completely updated and expanded comprehensive treatment of VHDL and its applications to the design and simulation of real, industry-standard circuits. This comprehensive treatment of VHDL and its applications to the design and simulation of real, industry-standard circuits has been completely updated and expanded for the third edition. New features include all VHDL-2008 constructs, an extensive review of digital circuits, RTL analysis, and an unequaled collection of VHDL examples and exercises. The book focuses on the use of VHDL rather than solely on the language, with an emphasis on design examples and laboratory exercises. The third edition begins with a detailed review of digital circuits (combinatorial, sequential, state machines, and FPGAs), thus providing a self-contained single reference for the teaching of digital circuit design with VHDL. In its coverage of VHDL-2008, it makes a clear distinction between VHDL for synthesis and VHDL for simulation. The text offers complete VHDL codes in examples as well as simulation results and comments. The significantly expanded examples and exercises include many not previously published, with multiple physical demonstrations meant to inspire and motivate students. The book is suitable for undergraduate and graduate students in VHDL and digital circuit design, and can be used as a professional reference for VHDL practitioners. It can also serve as a text for digital VLSI in-house or academic courses.
Hardware -- Logic Design.
Digital Design: An Embedded Systems Approach Using Verilog provides a foundation in digital design for students in computer engineering, electrical engineering and computer science courses. It takes an up-to-date and modern approach of presenting digital logic design as an activity in a larger systems design context. Rather than focus on aspects of digital design that have little relevance in a realistic design context, this book concentrates on modern and evolving knowledge and design skills. Hardware description language (HDL)-based design and verification is emphasized--Verilog examples are used extensively throughout. By treating digital logic as part of embedded systems design, this book provides an understanding of the hardware needed in the analysis and design of systems comprising both hardware and software components. Includes a Web site with links to vendor tools, labs and tutorials. - Presents digital logic design as an activity in a larger systems design context - Features extensive use of Verilog examples to demonstrate HDL (hardware description language) usage at the abstract behavioural level and register transfer level, as well as for low-level verification and verification environments - Includes worked examples throughout to enhance the reader's understanding and retention of the material - Companion Web site includes links to tools for FPGA design from Synplicity, Mentor Graphics, and Xilinx, Verilog source code for all the examples in the book, lecture slides, laboratory projects, and solutions to exercises
ANALYSIS AND DESIGN OF DIGITAL SYSTEMS WITH VHDL integrates industry-standard hardware description language (VHDL) technology into the undergraduate digital logic course. Author Allen Dewey observes that the widespread use of VHDL in specifying digital system designs is driving change and innovation in industry, and defining a new skill set that engineering students must master to design, model, communicate, and implement digital systems. VHDL provides a formal mechanism for describing digital systems in a format easily processed by computers, succinctly capturing the basic concepts of digital systems engineering and harnessing the power of design automation technology. This book first presents combinational and sequential systems and their design, along with logic families and integrated circuits. It then interlocks these subjects with discussions of structural and data flow modeling, synchronous behavior, and algorithmic modeling of digital systems in VHDL. This dual-track organization of conceptual and VHDL-related material makes the book easily adaptable to one- or two-semester courses and a variety of teaching approaches.