Download Free Very High Energy Phenomena In The Universe Book in PDF and EPUB Free Download. You can read online Very High Energy Phenomena In The Universe and write the review.

Extensive air showers are a very unique phenomenon. In the more than six decades since their discovery by Auger and collaborators we have learned a lot about these extremely energetic events and gained deep insight into high-energy phenomena, particle physics and astrophysics. In this Tutorial, Reference Manual and Data Book Peter K. F. Grieder provides the reader with a comprehensive view of the phenomenology and facts of the various types of interactions and cascades, theoretical background, experimental methods, data evaluation and interpretation and air shower simulation. He discusses astrophysical aspects of the primary radiation and addresses remaining puzzling questions that cannot yet be answered. They remain as a challenge for present and future research in the field. The book is split into two volumes. Volume I deals mainly with the basic theoretical framework of the processes that determine an air shower and ends with a summary of ways and means to extract information from air shower observations on the primary radiation. It also presents a compilation of data of our current knowledge of the high energy portion of the primary spectrum and composition. Volume II contains mainly compilations of data of experimental and theoretical nature as well as predictions from simulations of individual air shower constituents. Also included are chapters dedicated exclusively to special processes and detection methods. Extensive up-to-date reference lists appear at the end of each chapter. Researchers and students working in the field of cosmic ray detection and astroparticle physics will appreciate finding this book in their library.
Physics at the beginning of the twenty-first century has reached new levels of accomplishment and impact in a society and nation that are changing rapidly. Accomplishments have led us into the information age and fueled broad technological and economic development. The pace of discovery is quickening and stronger links with other fields such as the biological sciences are being developed. The intellectual reach has never been greater, and the questions being asked are more ambitious than ever before. Physics in a New Era is the final report of the NRC's six-volume decadal physics survey. The book reviews the frontiers of physics research, examines the role of physics in our society, and makes recommendations designed to strengthen physics and its ability to serve important needs such as national security, the economy, information technology, and education.
This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift surveys and weak gravitational lensing observations. Included is a chapter reviewing extensively the direct and indirect methods of detection of the hypothetical dark matter particles. Also included is a self-contained introduction to the techniques and most important results of numerical (e.g. N-body) simulations in cosmology. " This volume will be useful to researchers, PhD and graduate students in Astrophysics, Cosmology Physics and Mathematics, who are interested in cosmology, dark matter and dark energy.
Providing students with an in-depth account of the astrophysics of high energy phenomena in the Universe, the third edition of this well-established textbook is ideal for advanced undergraduate and beginning graduate courses in high energy astrophysics. Building on the concepts and techniques taught in standard undergraduate courses, this textbook provides the astronomical and astrophysical background for students to explore more advanced topics. Special emphasis is given to the underlying physical principles of high energy astrophysics, helping students understand the essential physics. The third edition has been completely rewritten, consolidating the previous editions into one volume. It covers the most recent discoveries in areas such as gamma-ray bursts, ultra-high energy cosmic rays and ultra-high energy gamma rays. The topics have been rearranged and streamlined to make them more applicable to a wide range of different astrophysical problems.
The proceedings of a symposium of high energy phenomena on the sun are presented. The subjects discussed include the following: (1) flare theories and optical observations, (2) microwave and hard X-ray observations, (3) ultraviolet and soft X-ray emissions, (4) nuclear reactions in solar flares, (5) energetic particles from the sun, (6) magnetic fields and particle storage, and (7) radio emissions in the corona and interplanetary space.
Many kinds of radiation exist in the universe, including photons and particles with a wide range of energies. Some of the radiation is produced in stars and galaxies, and some is cosmological background radiation, a relic from the history of cosmic evolution. Among all this radiation, the most energetic are cosmic ray particles: nucleons, nuclei, and even extremely energetic gamma rays. There are some observational facts about cosmic rays to give suggestions on their origin. The most important one among them is that the energy spectrum of high energy cosmic rays above 10 GeV (where the magnetic field of the sun is no longer a concern) is well represented by a power law form. This indicates cosmic ray particles are products of non-thermal processes. Their energy extends over more than 13 decades from 107 eV up to 1020 eV. In terms of its structure, the spectrum can be divided into three regions: two 'knees' and one 'ankle'. The first 'knee' appears around 3×1015 eV where the spectral power law index changes from -2.7 to -3.0. The second 'knee' is somewhere between 1017 eV and 1018 eV where the spectral slope changes from -3.0 to around -3.3. The 'ankle' is seen at or after 3×1018 eV. Above that energy the spectral slope is around -2.7, but with a large uncertainty because of poor statistics and resolution. This book deals with the final and most energetic population, the Ultra High Energy Cosmic Rays (UHECRs).
How patterns--from diagrams of spacetime to particle trails revealed by supercolliders--offer clues to the fundamental workings of the physical world. Our universe might appear chaotic, but deep down it's simply a myriad of rules working independently to create patterns of action, force, and consequence. In Ten Patterns That Explain the Universe, Brian Clegg explores the phenomena that make up the very fabric of our world by examining ten essential sequenced systems. From diagrams that show the deep relationships between space and time to the quantum behaviors that rule the way that matter and light interact, Clegg shows how these patterns provide a unique view of the physical world and its fundamental workings. Guiding readers on a tour of our world and the universe beyond, Clegg describes the cosmic microwave background, sometimes called the "echo of the big bang," and how it offers clues to the universe's beginnings; the diagrams that illustrate Einstein's revelation of the intertwined nature of space and time; the particle trail patterns revealed by the Large Hadron Collider and other accelerators; and the simple-looking patterns that predict quantum behavior (and decorated Richard Feynman's van). Clegg explains how the periodic table reflects the underlying pattern of the configuration of atoms, discusses the power of the number line, demonstrates the explanatory uses of tree diagrams, and more.