Download Free Vertebrate Zoology An Introduction To The Comparative Anatomy Embryology And Evolution Of Chordate Animals Scholars Choice Edition Book in PDF and EPUB Free Download. You can read online Vertebrate Zoology An Introduction To The Comparative Anatomy Embryology And Evolution Of Chordate Animals Scholars Choice Edition and write the review.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Chordate Origins and Evolution: The Molecular Evolutionary Road to Vertebrates focuses on echinoderms (starfish, sea urchins, and others), hemichordates (acorn worms, etc.), cephalochordates (lancelets), urochordates or tunicates (ascidians, larvaceans and others), and vertebrates. In general, evolution of these groups is discussed independently, on a larger scale: ambulacrarians (echi+hemi) and chordates (cephlo+uro+vert). Until now, discussion of these topics has been somewhat fragmented, and this work provides a unified presentation of the essential information. In the more than 150 years since Charles Darwin proposed the concept of the origin of species by means of natural selection, which has profoundly affected all fields of biology and medicine, the evolution of animals (metazoans) has been studied, discussed, and debated extensively. Following many decades of classical comparative morphology and embryology, the 1980s marked a turning point in studies of animal evolution, when molecular biological approaches, including molecular phylogeny (MP), molecular evolutionary developmental biology (evo-devo), and comparative genomics (CG), began to be employed. There are at least five key events in metazoan evolution, which include the origins of 1) diploblastic animals, such as cnidarians; 2) triploblastic animals or bilaterians; 3) protostomes and deuterostomes; 4) chordates, among deuterostomes; and 5) vertebrates, among chordates. The last two have received special attention in relation to evolution of human beings. During the past two decades, great advances have been made in this field, especially in regard to molecular and developmental mechanisms involved in the evolution of chordates. For example, the interpretation of phylogenetic relationships among deuterostomes has drastically changed. In addition, we have now obtained a large quantity of MP, evo-devo, and CG information on the origin and evolution of chordates. - Covers the most significant advances in this field to give readers an understanding of the interesting biological issues involved - Provides a unified presentation of essential information regarding each phylum and an integrative understanding of molecular mechanisms involved in the origin and evolution of chordates - Discusses the evolutionary scenario of chordates based on two major characteristic features of animals—namely modes of feeding (energy sources) and reproduction—as the two main forces driving animal evolution and benefiting dialogue for future studies of animal evolution
This book makes Moore's wisdom available to students in a lively, richly illustrated account of the history and workings of life. Employing rhetoric strategies including case histories, hypotheses and deductions, and chronological narrative, it provides both a cultural history of biology and an introduction to the procedures and values of science.
Depending on your point of view the brain is an organ, a machine, a biological computer, or simply the most important component of the nervous system. How does it work as a whole? What are its major parts and how are they interconnected to generate thinking, feelings, and behavior? This book surveys 2,500 years of scientific thinking about these profoundly important questions from the perspective of fundamental architectural principles, and then proposes a new model for the basic plan of neural systems organization based on an explosion of structural data emerging from the neuroanatomy revolution of the 1970's. The importance of a balance between theoretical and experimental morphology is stressed throughout the book. Great advances in understanding the brain's basic plan have come especially from two traditional lines of biological thought-- evolution and embryology, because each begins with the simple and progresses to the more complex. Understanding the organization of brain circuits, which contain thousands of links or pathways, is much more difficult. It is argued here that a four-system network model can explain the structure-function organization of the brain. Possible relationships between neural networks and gene networks revealed by the human genome project are explored in the final chapter. The book is written in clear and sparkling prose, and it is profusely illustrated. It is designed to be read by anyone with an interest in the basic organization of the brain, from neuroscience to philosophy to computer science to molecular biology. It is suitable for use in neuroscience core courses because it presents basic principles of the structure of the nervous system in a systematic way.