Download Free Verification Of Digital And Hybrid Systems Book in PDF and EPUB Free Download. You can read online Verification Of Digital And Hybrid Systems and write the review.

Proceedings of the NATO Advanced Study Institute on Verification of Digital and Hybrid Systems, Antalya, May 26 - June 6, 1997.
Hybrid systems describe the interaction of software, described by finite models such as finite-state machines, with the physical world, described by infinite models such as differential equations. This book addresses problems of verification and controller synthesis for hybrid systems. Although these problems are very difficult to solve for general hybrid systems, several authors have identified classes of hybrid systems that admit symbolic or finite models. The novelty of the book lies on the systematic presentation of these classes of hybrid systems along with the relationships between the hybrid systems and the corresponding symbolic models. To show how the existence of symbolic models can be used for verification and controller synthesis, the book also outlines several key results for the verification and controller design of finite systems. Several examples illustrate the different methods and techniques discussed in the book.
This reference book documents the scientific outcome of the DIMACS/SYCON Workshop on Verification and Control of Hybrid Systems, held at Rutgers University in New Brunswick, NJ, in October 1995. A hybrid system consists of digital devices that interact with analog environments. Computer science contributes expertise on the analog aspects of this emerging field of interdisciplinary research and design. The 48 revised full papers included were strictly refereed; they present the state of the art in this dynamic field with contributions by leading experts. Also available are the predecessor volumes published in the same series as LNCS 999 and LNCS 736.
This book grew out of a NATO Advanced Study Institute summer school that was held in Antalya, TUrkey from 26 May to 6 June 1997. The purpose of the summer school was to expose recent advances in the formal verification of systems composed of both logical and continuous time components. The course was structured in two parts. The first part covered theorem-proving, system automaton models, logics, tools, and complexity of verification. The second part covered modeling and verification of hybrid systems, i. e. , systems composed of a discrete event part and a continuous time part that interact with each other in novel ways. Along with advances in microelectronics, methods to design and build logical systems have grown progressively complex. One way to tackle the problem of ensuring the error-free operation of digital or hybrid systems is through the use of formal techniques. The exercise of comparing the formal specification of a logical system namely, what it is supposed to do to its formal operational description-what it actually does!-in an automated or semi-automated manner is called verification. Verification can be performed in an after-the-fact manner, meaning that after a system is already designed, its specification and operational description are regenerated or modified, if necessary, to match the verification tool at hand and the consistency check is carried out.
Integrated circuit capacity follows Moore's law, and chips are commonly produced at the time of this writing with over 70 million gates per device. Ensuring correct functional behavior of such large designs before fabrication poses an extremely challenging problem. Formal verification validates the correctness of the implementation of a design with respect to its specification through mathematical proof techniques. Formal techniques have been emerging as commercialized EDA tools in the past decade. Simulation remains a predominantly used tool to validate a design in industry. After more than 50 years of development, simulation methods have reached a degree of maturity, however, new advances continue to be developed in the area. A simulation approach for functional verification can theoretically validate all possible behaviors of a design but requires excessive computational resources. Rapidly evolving markets demand short design cycles while the increasing complexity of a design causes simulation approaches to provide less and less coverage. Formal verification is an attractive alternative since 100% coverage can be achieved; however, large designs impose unrealistic computational requirements. Combining formal verification and simulation into a single integrated circuit validation framework is an attractive alternative. This book focuses on an Integrated Design Validation (IDV) system that provides a framework for design validation and takes advantage of current technology in the areas of simulation and formal verification resulting in a practical validation engine with reasonable runtime. After surveying the basic principles of formal verification and simulation, this book describes the IDV approach to integrated circuit functional validation. Table of Contents: Introduction / Formal Methods Background / Simulation Approaches / Integrated Design Validation System / Conclusion and Summary