Download Free Ventilation And Airflow In Buildings Book in PDF and EPUB Free Download. You can read online Ventilation And Airflow In Buildings and write the review.

Energy efficiency in buildings requires, among other things, that ventilation be appropriately dimensioned: too much ventilation wastes energy, and insufficient ventilation leads to poor indoor air quality and low comfort. Studies have shown that ventilation systems seldom function according to their commissioned design. They have also shown that airflow measurement results are essential in improving a ventilation system. This key handbook explains why ventilation in buildings should be measured and describes how to measure it, giving applied examples for each measurement method. The book will help building physicists and ventilation engineers to properly commission ventilation systems and appropriately diagnose ventilation problems throughout the life of a building. Drawing on over 20 years of experience and the results of recent international research projects, this is the definitive guide to diagnosing airflow patterns within buildings.
This guideline defines ventilation and then natural ventilation. It explores the design requirements for natural ventilation in the context of infection control, describing the basic principles of design, construction, operation and maintenance for an effective natural ventilation system to control infection in health-care settings.
Hazim Awbi's Ventilation of Buildings has become established as the definitive text on the subject. This new, thoroughly revised, edition builds on the basic principles of the original text drawing in the results of considerable new research in the field. A new chapter on natural ventilation is also added and recent developments in ventilation concepts and room air distribution are also considered. The text is intended for the practitioner in the building services industry, the architect, the postgraduate student undertaking courses or research in HVAC, building services engineering, or building environmental engineering, and the undergraduate studying building services as a major subject. Readers are assumed to be familiar with the basic principles of fluid flow and heat transfer and some of the material requires more advanced knowledge of partial differential equations which describe the turbulent flow and heat transfer processes of fluids. The book is both a presentation of the practical issues that are needed for modern ventilation system design and a survey of recent developments in the subject
Energy efficiency in buildings requires, among other things, that ventilation be appropriately dimensioned: too much ventilation wastes energy, and insufficient ventilation leads to poor indoor air quality and low comfort.Studies have shown that ventilation systems seldom function according to their commissioned design. They have also shown that airflow measurement results are essential in improving a ventilation system. This key handbook explains why ventilation in buildings should be measured and describes how to measure it, giving applied examples for each measurement method.The book will help building physicists and ventilation engineers to properly commission ventilation systems and appropriately diagnose ventilation problems throughout the life of a building. Drawing on over 20 years of experience and the results of recent international research projects, this is the definitive guide to diagnosing airflow patterns within buildings.
AIOLOS is a computational tool for the calculation of the airflow rates in naturally ventilated buildings.
Ensuring optimum ventilation performance is a vital part of building design. Prepared by recognized experts from Europe and the US, and published in association with the International Energy Agency's Air Infiltration and Ventilation Centre (AIVC), this authoritative work provides organized, classified and evaluated information on advances in the key areas of building ventilation, relevant to all building types. Complexities in airflow behaviour, climatic influences, occupancy patterns and pollutant emission characteristics make selecting the most appropriate ventilation strategy especially difficult. Recognizing such complexities, the editors bring together expertise on each key issue. From components to computer tools, this book offers detailed coverage on design, analysis and performance, and is an important and comprehensive publication in this field. Building Ventilation will be an invaluable reference for professionals in the building services industry, architects, researchers (including postgraduate students) studying building service engineering and HVAC, and anyone with a role in energy-efficient building design.
Buildings can make us sick or keep us well. Diseases and toxins course through indoor spaces, making us ill. Meanwhile, better air quality and light levels improve productivity. At a time when the COVID-19 pandemic has us focused more than ever on indoor air quality, Healthy Buildings shows how much we have to gain from human-centered design.
Microbial pollution is a key element of indoor air pollution. It is caused by hundreds of species of bacteria and fungi, in particular filamentous fungi (mould), growing indoors when sufficient moisture is available. This document provides a comprehensive review of the scientific evidence on health problems associated with building moisture and biological agents. The review concludes that the most important effects are increased prevalences of respiratory symptoms, allergies and asthma as well as perturbation of the immunological system. The document also summarizes the available information on the conditions that determine the presence of mould and measures to control their growth indoors. WHO guidelines for protecting public health are formulated on the basis of the review. The most important means for avoiding adverse health effects is the prevention (or minimization) of persistent dampness and microbial growth on interior surfaces and in building structures. [Ed.]