Download Free Vehicle Technology Book in PDF and EPUB Free Download. You can read online Vehicle Technology and write the review.

Fully updated throughout, Electric Vehicle Technology, Second Edition, is a complete guide to the principles, design and applications of electric vehicle technology. Including all the latest advances, it presents clear and comprehensive coverage of the major aspects of electric vehicle development and offers an engineering-based evaluation of electric motor scooters, cars, buses and trains. This new edition includes: important new chapters on types of electric vehicles, including pickup and linear motors, overall efficiencies and energy consumption, and power generation, particularly for zero carbon emissions expanded chapters updating the latest types of EV, types of batteries, battery technology and other rechargeable devices, fuel cells, hydrogen supply, controllers, EV modeling, ancillary system design, and EV and the environment brand new practical examples and case studies illustrating how electric vehicles can be used to substantially reduce carbon emissions and cut down reliance on fossil fuels futuristic concept models, electric and high-speed trains and developments in magnetic levitation and linear motors an examination of EV efficiencies, energy consumption and sustainable power generation. MATLAB® examples can be found on the companion website www.wiley.com/go/electricvehicle2e Explaining the underpinning science and technology, this book is essential for practicing electrical, automotive, power, control and instrumentation engineers working in EV research and development. It is also a valuable reference for academics and students in automotive, mechanical, power and electrical engineering.
This eagerly awaited second edition of Heinz Heisler's Advanced Vehicle Technology is a comprehensive and thorough description of vehice bodies and components. The second edition has been rigorously updated to provide additional material on subjects such as antilock braking, vehicle aerodynamics, tire tread design advances, electronically controlled anti-vibration engine mountings and transport refrigeration. Around 100 new diagrams have been included to complement the text. Advanced Vehicle Technology 2nd edition's depth of coverage, detailed illustrations and fluent and precise style are the outstanding features in this high quality student text. - More quality artwork has been added to enhance and add value to the explanation given in the text - 16 key topics have been updated to bring this 2nd edition in line with current technology - Fully international in scope, reflecting the nature of contemporary vehicle engineering
The motor vehicle technology covered in this book has become in the more than 125 years of its history in many aspects an extremely complex and, in many areas of engineering science . Motor vehicles must remain functional under harsh environmental conditions and extreme continuous loads and must also be reliably brought into a safe state even in the event of a failure by a few trained operators. The automobile is at the same time a mass product, which must be produced in millions of pieces and at extremely low cost. In addition to the fundamentals of current vehicle systems, the book also provides an overview of future developments such as, for example, in the areas of electromobility, alternative drives and driver assistance systems. The basis for the book is a series of lectures on automotive engineering, which has been offered by the first-named author at the University of Duisburg-Essen for many years. Starting from classical systems in the automobile, the reader is given a systemic view of modern motor vehicles. In addition to the pure basic function, the modeling of individual (sub-) systems is also discussed. This gives the reader a deep understanding of the underlying principles. In addition, the book with the given models provides a basis for the practical application in the area of ​​simulation technology and thus achieves a clear added value against books, which merely explain the function of a system without entering into the modeling. On the basis of today's vehicle systems we will continue to look at current and future systems. In addition to the state-of-the-art, the reader is thus taught which topics are currently dominant in research and which developments can be expected for the future. In particular, a large number of practical examples are provided directly from the vehicle industry. Especially for students of vehicle-oriented study courses and lectures, the book thus enables an optimal preparation for possible future fields of activity.
A comprehensive and up-to-date reference book on modern electric vehicle technology, which covers the engineering philosophy, state-of-the-art technology, and commercialisation of electrical vehicles.
This book aims to teach the core concepts that make Self-driving vehicles (SDVs) possible. It is aimed at people who want to get their teeth into self-driving vehicle technology, by providing genuine technical insights where other books just skim the surface. The book tackles everything from sensors and perception to functional safety and cybersecurity. It also passes on some practical know-how and discusses concrete SDV applications, along with a discussion of where this technology is heading. It will serve as a good starting point for software developers or professional engineers who are eager to pursue a career in this exciting field and want to learn more about the basics of SDV algorithms. Likewise, academic researchers, technology enthusiasts, and journalists will also find the book useful. Key Features: Offers a comprehensive technological walk-through of what really matters in SDV development: from hardware, software, to functional safety and cybersecurity Written by an active practitioner with extensive experience in series development and research in the fields of Advanced Driver Assistance Systems (ADAS) and Autonomous Driving Covers theoretical fundamentals of state-of-the-art SLAM, multi-sensor data fusion, and other SDV algorithms. Includes practical information and hands-on material with Robot Operating System (ROS) and Open Source Car Control (OSCC). Provides an overview of the strategies, trends, and applications which companies are pursuing in this field at present as well as other technical insights from the industry.
The automotive industry appears close to substantial change engendered by “self-driving” technologies. This technology offers the possibility of significant benefits to social welfare—saving lives; reducing crashes, congestion, fuel consumption, and pollution; increasing mobility for the disabled; and ultimately improving land use. This report is intended as a guide for state and federal policymakers on the many issues that this technology raises.
Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance: Towards Zero Carbon Transportation, Second Edition provides a comprehensive view of key developments in advanced fuels and vehicle technologies to improve the energy efficiency and environmental impact of the automotive sector. Sections consider the role of alternative fuels such as electricity, alcohol and hydrogen fuel cells, as well as advanced additives and oils in environmentally sustainable transport. Other topics explored include methods of revising engine and vehicle design to improve environmental performance and fuel economy and developments in electric and hybrid vehicle technologies. This reference will provide professionals, engineers and researchers of alternative fuels with an understanding of the latest clean technologies which will help them to advance the field. Those working in environmental and mechanical engineering will benefit from the detailed analysis of the technologies covered, as will fuel suppliers and energy producers seeking to improve the efficiency, sustainability and accessibility of their work. - Provides a fully updated reference with significant technological advances and developments in the sector - Presents analyses on the latest advances in electronic systems for emissions control, autonomous systems, artificial intelligence and legislative requirements - Includes a strong focus on updated climate change predictions and consequences, helping the reader work towards ambitious 2050 climate change goals for the automotive industry
Hillier's famous series of Motor Vehicle Technology texts have been completely revised and updated.
Autonomous and Connected Heavy Vehicle Technology presents the fundamentals, definitions, technologies, standards and future developments of autonomous and connected heavy vehicles. This book provides insights into various issues pertaining to heavy vehicle technology and helps users develop solutions towards autonomous, connected, cognitive solutions through the convergence of Big Data, IoT, cloud computing and cognition analysis. Various physical, cyber-physical and computational key points related to connected vehicles are covered, along with concepts such as edge computing, dynamic resource optimization, engineering process, methodology and future directions. The book also contains a wide range of case studies that help to identify research problems and an analysis of the issues and synthesis solutions. This essential resource for graduate-level students from different engineering disciplines such as automotive and mechanical engineering, computer science, data science and business analytics combines both basic concepts and advanced level content from technical experts. Covers state-of-the-art developments and research in vehicle sensor technology, vehicle communication technology, convergence with emerging technologies, and vehicle software and hardware integration Addresses challenges such as optimization, real-time control systems for distance and steering mechanism, and cognitive and predictive analysis Provides complete product development, commercial deployment, technological and performing costs and scaling needs
The book includes contributions on the latest model-based methods for the development of personal and commercial vehicle control devices. The main topics treated are: application of simulation and model design to development of driver assistance systems; physical and database model design for engines, motors, powertrain, undercarriage and the whole vehicle; new simulation tools, methods and optimization processes; applications of simulation in function and software development; function and software testing using HiL, MiL and SiL simulation; application of simulation and optimization in application of control devices; automation approaches at all stages of the development process.