Download Free Vascular Endothelial Dysfunction In Chronic Inflammatory Disease Book in PDF and EPUB Free Download. You can read online Vascular Endothelial Dysfunction In Chronic Inflammatory Disease and write the review.

In the past two decades a number of studies have shown that abnormalities in the function and structure of coronary microcirculation can be detected in several cardiovascular diseases. On the basis of the clinical setting in which it occurs, coronary microvascular dysfunction (CMD) can be classified into four types: CMD in the absence of any other cardiac disease; CMD in myocardial diseases; CMD in obstructive epicardial coronary artery disease; and iatrogenic CMD. In some instances CMD represents an epiphenomenon, whereas in others it represents an important marker of risk or may contribute to the pathogenesis of myocardial ischemia, thus becoming a possible therapeutic target. This book provides an update on coronary physiology and a systematic assessment of microvascular abnormalities in cardiovascular diseases, in the hope that it will assist clinicians in prevention, detection and management of CMD in their everyday activity.
Endothelial dysfunction is broadly defined as a disruption of the balance between vasoactive mediators and a propensity towards an inflammatory state. This volume provides an overview of the fields of endothelial dysfunction and inflammation through the discussion of topics ranging from the molecular biology of activated endothelial cells to the endothelium in inflammatory disease and therapeutic approaches targeting endothelial dysfunction. Topics include: Heterogeneity of the endothelium during inflammation, oxidative stress and endothelial dysfunction, biology and regulation of nitric oxide in inflammatory pathologies, endothelial dysfunction in inflammatory diseases, such as diabetes and atherosclerosis and Clinical methods used to assess endothelial function. This book brings together basic and clinical research to assist the reader in bridging connections from bench-to-bedside. Written by expert researchers in the fields of endothelial biology, inflammation research and clinical science, it serves as a useful reference for academic and industrial researchers, clinicians, and trainees in the medical profession.
The microcirculation is highly responsive to, and a vital participant in, the inflammatory response. All segments of the microvasculature (arterioles, capillaries, and venules) exhibit characteristic phenotypic changes during inflammation that appear to be directed toward enhancing the delivery of inflammatory cells to the injured/infected tissue, isolating the region from healthy tissue and the systemic circulation, and setting the stage for tissue repair and regeneration. The best characterized responses of the microcirculation to inflammation include impaired vasomotor function, reduced capillary perfusion, adhesion of leukocytes and platelets, activation of the coagulation cascade, and enhanced thrombosis, increased vascular permeability, and an increase in the rate of proliferation of blood and lymphatic vessels. A variety of cells that normally circulate in blood (leukocytes, platelets) or reside within the vessel wall (endothelial cells, pericytes) or in the perivascular space (mast cells, macrophages) are activated in response to inflammation. The activation products and chemical mediators released from these cells act through different well-characterized signaling pathways to induce the phenotypic changes in microvessel function that accompany inflammation. Drugs that target a specific microvascular response to inflammation, such as leukocyte-endothelial cell adhesion or angiogenesis, have shown promise in both the preclinical and clinical studies of inflammatory disease. Future research efforts in this area will likely identify new avenues for therapeutic intervention in inflammation. Table of Contents: Introduction / Historical Perspectives / Anatomical Considerations / Impaired Vasomotor Responses / Capillary Perfusion / Angiogenesis / Leukocyte-Endothelial Cell Adhesion / Platelet-Vessel Wall Interactions / Coagulation and Thrombosis / Endothelial Barrier Dysfunction / Epilogue / References
Endothelial cells form the inner lining of blood and lymphatic vessels and they have frequent interactions with immune cells as well as foreign agents. Endothelial function is crucially involved in physiologic immunity at different stages including recruitment of leukocytes, angiogenesis and tissue repair. Endothelial dysfunction is a not well-defined term, it is widely used to describe the non-physiologic activity of endothelial cells. It has been suggested that endothelial dysfunction plays a role in a variety of human diseases, such as arteriosclerosis, cancer, autoimmunity and sepsis. More recently, a role of lymphatic endothelial cells as well as vascular endothelial cells in the pathophysiology of inflammation and allo-immune reactions has been suggested. Development of novel therapeutic approaches to normalize endothelial dysfunction is currently an unmet medical need. Until now, the cellular and molecular mechanisms of mutual influences between endothelial dysfunction and human diseases remain largely unexplored, constituting a frontier hindering the development of new therapies. This Research Topic aims to build a forum for a wide range of scientific studies in the fields of endothelial dysfunction during inflammatory diseases and transplantation.
Endothelial dysfunction is broadly defined as a disruption of the balance between vasoactive mediators and a propensity towards an inflammatory state. This volume provides an overview of the fields of endothelial dysfunction and inflammation through the discussion of topics ranging from the molecular biology of activated endothelial cells to the endothelium in inflammatory disease and therapeutic approaches targeting endothelial dysfunction. Topics include: Heterogeneity of the endothelium during inflammation, oxidative stress and endothelial dysfunction, biology and regulation of nitric oxide in inflammatory pathologies, endothelial dysfunction in inflammatory diseases, such as diabetes and atherosclerosis and Clinical methods used to assess endothelial function. This book brings together basic and clinical research to assist the reader in bridging connections from bench-to-bedside. Written by expert researchers in the fields of endothelial biology, inflammation research and clinical science, it serves as a useful reference for academic and industrial researchers, clinicians, and trainees in the medical profession.
New updated edition first published with Cambridge University Press. This new edition includes 29 chapters on topics as diverse as pathophysiology of atherosclerosis, vascular haemodynamics, haemostasis, thrombophilia and post-amputation pain syndromes.
The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References
The endothelium enables communication between blood and tissues and is actively involved in cardiovascular homeostasis. Endothelial dysfunction has been recognized as an early step in the development of cardiovascular diseases: respectively, endothelium represents a potential therapeutic niche with multiple targets. The purpose of the book is to point out some recent findings of endothelial physiology and pathophysiology emphasizing various aspects of endothelial dysfunction connected to the body's internal and external environment. While basic features of the endothelium are presented in an introductory chapter, the authors of the following 17 chapters have provided extensive insight into some selected topics of endothelial (dys)function. The book would hopefully be useful for anyone interested in recapitulating endothelial (patho)physiology and expanding knowledge of molecular mechanisms involved in endothelial dysfunction, relevant also for further clinical investigations.
Endothelial Signaling in Vascular Dysfunction and Disease: From Bench to Bedside provides a detailed understanding of the endothelium, its activation and their link to some common clinical disorders. In addition, the book covers earlier discoveries, including those from the last and 19th centuries. It is split into five sections that cover the vascular tree as an integrative structure, the endothelium in inflammation, endothelial signaling, activation and toxicity with chemotherapy, radiation induced endothelial dysfunction and vascular disease, and therapies in combating vascular diseases. Each section is discussed with a translational approach in order to make the content truly applicable. This book is a valuable source for basic researchers, clinicians in the fields of Oncology, Cardiovascular Medicine and Radiology, and members of the biomedical field who are conducting studies related to the endothelium and vascular disease. Discusses the most relevant discoveries in endothelial biology and their link to manifestations of clinical disease Presents history and diagrams in each section to highlight the original biological discovery and its link of clinical manifestations of vascular disease Includes recent findings on the relationship between endothelial signaling, chemotherapy and radiation induced endothelial dysfunction