Download Free Vascular Dynamics Book in PDF and EPUB Free Download. You can read online Vascular Dynamics and write the review.

The function of the vascular system is to transport oxygen and nutrients to the cells and to remove carbon dioxide and metabolites. It also transports hormones and locally produced neurohumoral substances which, in part, regulate its own function. These interrelationships are essential to homeostasis. The vascular system is not an assembly of simple (elastic) tubes but a dynamic system with many external and intrinsic regulatory mechanisms. The endothelium plays a major role in the intrinsic regulation of the system. The system is also often subject to disease processes of which atherosclerosis is the most important. As a result of atherosclerosis, and other disease processes, replacement of vessels with prosthetic devices may be required to reestablish adequate tissue blood flow. It is therefore imperative to gain insight into the details of vascular function, especially the dynamics, and the endothelium, the processes of atherosclerosis development, the vascular prosthetic possibilities and, last but not least, the interrelationships between these sub-specialties.
The first edition of the book was written employing mathematical techniques to formulate the physical principles involved in the structural and functional correlates of the underlying physiology.This current and self-contained second edition updates many of the new findings since its first edition a decade ago. It also includes a new chapter on the 'Interaction with the Heart'. The dynamics of the arterial system, the venous system, the microcirculation and their interaction with the heart are quantitatively described in terms of their structures and functions. Clinical measurements, applications to the cardiovascular field and physiological mechanisms are clearly identified throughout the text. Most importantly, worked examples are provided, such that the readers can appreciate the application aspects of the underlying formulation.
The function of the vascular system is to transport oxygen and nutrients to the cells and to remove carbon dioxide and metabolites. It also transports hormones and locally produced neurohumoral substances which, in part, regulate its own function. These interrelationships are essential to homeostasis. The vascular system is not an assembly of simple (elastic) tubes but a dynamic system with many external and intrinsic regulatory mechanisms. The endothelium plays a major role in the intrinsic regulation of the system. The system is also often subject to disease processes of which atherosclerosis is the most important. As a result of atherosclerosis, and other disease processes, replacement of vessels with prosthetic devices may be required to reestablish adequate tissue blood flow. It is therefore imperative to gain insight into the details of vascular function, especially the dynamics, and the endothelium, the processes of atherosclerosis development, the vascular prosthetic possibilities and, last but not least, the interrelationships between these sub-specialties.
Circulatory System Dynamics reviews cardiovascular dynamics from the analytical viewpoint and indicates ways in which the accumulated knowledge can be expanded and applied to further enhance understanding of the normal mammalian circulation, to ascertain the nature of difficulties associated with disease, and to test the effect of treatment. Comprised of 10 chapters, this volume begins with an overview of the circulatory system, including its anatomy and the trigger for myocardial (heart muscle) contraction. The discussion then turns to measurement of blood pressure using invasive and non-invasive techniques; blood flow measurement, with emphasis on cardiac output and measurement in the microcirculation; the system and pulmonary arterial trees; and pulsatile pressure and flow in pulmonary veins. Subsequent chapters explore microcirculation and the anatomy of the microvasculature; the heart and coronary circulation, paying particular attention to the Frank-Starling mechanism and indices of myocardial "contractility"; and control of blood pressure, peripheral resistance, and cerebral flow. The last two chapters deal with circulatory assistance and the closed cardiovascular system. This book will be of interest to students, practitioners, and researchers in fields ranging from physiology and biology to biochemistry and biophysics.
First Published in 1981, this book offers a full, comprehensive guide to the operation of cardiovascular fluid systems. Carefully compiled and filled with a vast repertoire of notes, diagrams, and references this book serves as a useful reference for cardiologists, haematologists, students of medicine, and other practitioners in their respective fields.
New updated edition first published with Cambridge University Press. This new edition includes 29 chapters on topics as diverse as pathophysiology of atherosclerosis, vascular haemodynamics, haemostasis, thrombophilia and post-amputation pain syndromes.